feat: Added stuff
Some checks failed
build / checks-matrix (push) Successful in 19m25s
build / checks-build (push) Has been cancelled
build / codecov (push) Has been cancelled
docs / docs (push) Has been cancelled

This commit is contained in:
uttarayan21
2025-08-18 11:31:03 +05:30
parent 2d2309837f
commit 33afbfc2b8
18 changed files with 987 additions and 375 deletions

3
src/facedet/mnn/mod.rs Normal file
View File

@@ -0,0 +1,3 @@
pub mod retinaface;
pub use retinaface::FaceDetection;

View File

@@ -0,0 +1,174 @@
use crate::errors::*;
use crate::facedet::postprocess::*;
use error_stack::ResultExt;
use mnn_bridge::ndarray::*;
use ndarray_resize::NdFir;
use std::path::Path;
#[derive(Debug)]
pub struct FaceDetection {
handle: mnn_sync::SessionHandle,
}
pub struct FaceDetectionBuilder {
schedule_config: Option<mnn::ScheduleConfig>,
backend_config: Option<mnn::BackendConfig>,
model: mnn::Interpreter,
}
impl FaceDetectionBuilder {
pub fn new(model: impl AsRef<[u8]>) -> Result<Self> {
Ok(Self {
schedule_config: None,
backend_config: None,
model: mnn::Interpreter::from_bytes(model.as_ref())
.map_err(|e| e.into_inner())
.change_context(Error)
.attach_printable("Failed to load model from bytes")?,
})
}
pub fn with_forward_type(mut self, forward_type: mnn::ForwardType) -> Self {
self.schedule_config
.get_or_insert_default()
.set_type(forward_type);
self
}
pub fn with_schedule_config(mut self, config: mnn::ScheduleConfig) -> Self {
self.schedule_config = Some(config);
self
}
pub fn with_backend_config(mut self, config: mnn::BackendConfig) -> Self {
self.backend_config = Some(config);
self
}
pub fn build(self) -> Result<FaceDetection> {
let model = self.model;
let sc = self.schedule_config.unwrap_or_default();
let handle = mnn_sync::SessionHandle::new(model, sc)
.change_context(Error)
.attach_printable("Failed to create session handle")?;
Ok(FaceDetection { handle })
}
}
impl FaceDetection {
pub fn builder<T: AsRef<[u8]>>()
-> fn(T) -> std::result::Result<FaceDetectionBuilder, Report<Error>> {
FaceDetectionBuilder::new
}
pub fn new(path: impl AsRef<Path>) -> Result<Self> {
let model = std::fs::read(path)
.change_context(Error)
.attach_printable("Failed to read model file")?;
Self::new_from_bytes(&model)
}
pub fn new_from_bytes(model: &[u8]) -> Result<Self> {
tracing::info!("Loading face detection model from bytes");
let mut model = mnn::Interpreter::from_bytes(model)
.map_err(|e| e.into_inner())
.change_context(Error)
.attach_printable("Failed to load model from bytes")?;
model.set_session_mode(mnn::SessionMode::Release);
model
.set_cache_file("retinaface.cache", 128)
.change_context(Error)
.attach_printable("Failed to set cache file")?;
let bc = mnn::BackendConfig::default().with_memory_mode(mnn::MemoryMode::High);
let sc = mnn::ScheduleConfig::new()
.with_type(mnn::ForwardType::Metal)
.with_backend_config(bc);
tracing::info!("Creating session handle for face detection model");
let handle = mnn_sync::SessionHandle::new(model, sc)
.change_context(Error)
.attach_printable("Failed to create session handle")?;
Ok(FaceDetection { handle })
}
}
impl FaceDetector for FaceDetection {
fn run_model(&mut self, image: ndarray::ArrayView3<u8>) -> Result<FaceDetectionModelOutput> {
#[rustfmt::skip]
let mut resized = image
.fast_resize(1024, 1024, None)
.change_context(Error)?
.mapv(|f| f as f32);
// Apply mean subtraction: [104, 117, 123]
resized
.axis_iter_mut(ndarray::Axis(2))
.zip([104, 117, 123])
.for_each(|(mut array, pixel)| {
let pixel = pixel as f32;
array.map_inplace(|v| *v -= pixel);
});
let mut resized = resized
.permuted_axes((2, 0, 1))
.insert_axis(ndarray::Axis(0))
.as_standard_layout()
.into_owned();
use ::tap::*;
let output = self
.handle
.run(move |sr| {
let tensor = resized
.as_mnn_tensor_mut()
.attach_printable("Failed to convert ndarray to mnn tensor")
.change_context(mnn::error::ErrorKind::TensorError)?;
tracing::trace!("Image Tensor shape: {:?}", tensor.shape());
let (intptr, session) = sr.both_mut();
tracing::trace!("Copying input tensor to host");
unsafe {
let mut input = intptr.input_unresized::<f32>(session, "input")?;
tracing::trace!("Input shape: {:?}", input.shape());
intptr.resize_tensor_by_nchw::<mnn::View<&mut f32>, _>(
input.view_mut(),
1,
3,
1024,
1024,
);
}
intptr.resize_session(session);
let mut input = intptr.input::<f32>(session, "input")?;
tracing::trace!("Input shape: {:?}", input.shape());
input.copy_from_host_tensor(tensor.view())?;
tracing::info!("Running face detection session");
intptr.run_session(&session)?;
let output_tensor = intptr
.output::<f32>(&session, "bbox")?
.create_host_tensor_from_device(true)
.as_ndarray()
.to_owned();
tracing::trace!("Output Bbox: \t\t{:?}", output_tensor.shape());
let output_confidence = intptr
.output::<f32>(&session, "confidence")?
.create_host_tensor_from_device(true)
.as_ndarray::<ndarray::Ix3>()
.to_owned();
tracing::trace!("Output Confidence: \t{:?}", output_confidence.shape());
let output_landmark = intptr
.output::<f32>(&session, "landmark")?
.create_host_tensor_from_device(true)
.as_ndarray::<ndarray::Ix3>()
.to_owned();
tracing::trace!("Output Landmark: \t{:?}", output_landmark.shape());
Ok(FaceDetectionModelOutput {
bbox: output_tensor,
confidence: output_confidence,
landmark: output_landmark,
})
})
.map_err(|e| e.into_inner())
.change_context(Error)?;
Ok(output)
}
}

3
src/facedet/ort/mod.rs Normal file
View File

@@ -0,0 +1,3 @@
pub mod retinaface;
pub use retinaface::FaceDetection;

View File

@@ -0,0 +1,264 @@
use crate::errors::*;
use crate::facedet::postprocess::*;
use error_stack::ResultExt;
use ndarray_resize::NdFir;
use ort::{
execution_providers::{
CPUExecutionProvider, CoreMLExecutionProvider, ExecutionProviderDispatch,
},
session::{Session, builder::GraphOptimizationLevel},
value::Tensor,
};
use std::path::Path;
#[derive(Debug)]
pub struct FaceDetection {
session: Session,
}
pub struct FaceDetectionBuilder {
model_data: Vec<u8>,
execution_providers: Option<Vec<ExecutionProviderDispatch>>,
intra_threads: Option<usize>,
inter_threads: Option<usize>,
}
impl FaceDetectionBuilder {
pub fn new(model: impl AsRef<[u8]>) -> crate::errors::Result<Self> {
Ok(Self {
model_data: model.as_ref().to_vec(),
execution_providers: None,
intra_threads: None,
inter_threads: None,
})
}
pub fn with_execution_providers(mut self, providers: Vec<String>) -> Self {
let execution_providers: Vec<ExecutionProviderDispatch> = providers
.into_iter()
.filter_map(|provider| match provider.as_str() {
"cpu" | "CPU" => Some(CPUExecutionProvider::default().build()),
#[cfg(target_os = "macos")]
"coreml" | "CoreML" => Some(CoreMLExecutionProvider::default().build()),
_ => {
tracing::warn!("Unknown execution provider: {}", provider);
None
}
})
.collect();
if !execution_providers.is_empty() {
self.execution_providers = Some(execution_providers);
} else {
tracing::warn!("No valid execution providers found, falling back to CPU");
self.execution_providers = Some(vec![CPUExecutionProvider::default().build()]);
}
self
}
pub fn with_intra_threads(mut self, threads: usize) -> Self {
self.intra_threads = Some(threads);
self
}
pub fn with_inter_threads(mut self, threads: usize) -> Self {
self.inter_threads = Some(threads);
self
}
pub fn build(self) -> crate::errors::Result<FaceDetection> {
let mut session_builder = Session::builder()
.change_context(Error)
.attach_printable("Failed to create session builder")?;
// Set execution providers
if let Some(providers) = self.execution_providers {
session_builder = session_builder
.with_execution_providers(providers)
.change_context(Error)
.attach_printable("Failed to set execution providers")?;
} else {
// Default to CPU
session_builder = session_builder
.with_execution_providers([CPUExecutionProvider::default().build()])
.change_context(Error)
.attach_printable("Failed to set default CPU execution provider")?;
}
// Set threading options
if let Some(threads) = self.intra_threads {
session_builder = session_builder
.with_intra_threads(threads)
.change_context(Error)
.attach_printable("Failed to set intra threads")?;
}
if let Some(threads) = self.inter_threads {
session_builder = session_builder
.with_inter_threads(threads)
.change_context(Error)
.attach_printable("Failed to set inter threads")?;
}
// Set optimization level
session_builder = session_builder
.with_optimization_level(GraphOptimizationLevel::Level3)
.change_context(Error)
.attach_printable("Failed to set optimization level")?;
// Create session from model bytes
let session = session_builder
.commit_from_memory(&self.model_data)
.change_context(Error)
.attach_printable("Failed to create ORT session from model bytes")?;
tracing::info!("Successfully created ORT RetinaFace session");
Ok(FaceDetection { session })
}
}
impl FaceDetection {
pub fn builder<T: AsRef<[u8]>>()
-> fn(T) -> std::result::Result<FaceDetectionBuilder, error_stack::Report<crate::errors::Error>>
{
FaceDetectionBuilder::new
}
pub fn new(path: impl AsRef<Path>) -> crate::errors::Result<Self> {
let model = std::fs::read(path)
.change_context(Error)
.attach_printable("Failed to read model file")?;
Self::new_from_bytes(&model)
}
pub fn new_from_bytes(model: &[u8]) -> crate::errors::Result<Self> {
tracing::info!("Loading ORT RetinaFace model from bytes");
Self::builder()(model)?.build()
}
}
impl FaceDetector for FaceDetection {
fn run_model(
&mut self,
image: ndarray::ArrayView3<u8>,
) -> crate::errors::Result<FaceDetectionModelOutput> {
// Resize image to 1024x1024
let mut resized = image
.fast_resize(1024, 1024, None)
.change_context(Error)
.attach_printable("Failed to resize image")?
.mapv(|f| f as f32);
// Apply mean subtraction: [104, 117, 123] for BGR format
resized
.axis_iter_mut(ndarray::Axis(2))
.zip([104.0, 117.0, 123.0])
.for_each(|(mut array, mean)| {
array.map_inplace(|v| *v -= mean);
});
// Convert from HWC to NCHW format (add batch dimension and transpose)
let input_tensor = resized
.permuted_axes((2, 0, 1))
.insert_axis(ndarray::Axis(0))
.as_standard_layout()
.into_owned();
tracing::trace!("Input tensor shape: {:?}", input_tensor.shape());
// Create ORT input tensor
let input_value = Tensor::from_array(input_tensor)
.change_context(Error)
.attach_printable("Failed to create input tensor")?;
// Run inference
tracing::debug!("Running ORT RetinaFace inference");
let outputs = self
.session
.run(ort::inputs!["input" => input_value])
.change_context(Error)
.attach_printable("Failed to run inference")?;
// Extract outputs by name
let bbox_output = outputs
.get("bbox")
.ok_or(Error)
.attach_printable("Missing bbox output from model")?
.try_extract_tensor::<f32>()
.change_context(Error)
.attach_printable("Failed to extract bbox tensor")?;
let confidence_output = outputs
.get("confidence")
.ok_or(Error)
.attach_printable("Missing confidence output from model")?
.try_extract_tensor::<f32>()
.change_context(Error)
.attach_printable("Failed to extract confidence tensor")?;
let landmark_output = outputs
.get("landmark")
.ok_or(Error)
.attach_printable("Missing landmark output from model")?
.try_extract_tensor::<f32>()
.change_context(Error)
.attach_printable("Failed to extract landmark tensor")?;
// Get tensor shapes and data
let (bbox_shape, bbox_data) = bbox_output;
let (confidence_shape, confidence_data) = confidence_output;
let (landmark_shape, landmark_data) = landmark_output;
tracing::trace!(
"Output shapes - bbox: {:?}, confidence: {:?}, landmark: {:?}",
bbox_shape,
confidence_shape,
landmark_shape
);
// Convert to ndarray format
let bbox_dims = bbox_shape.as_ref();
let confidence_dims = confidence_shape.as_ref();
let landmark_dims = landmark_shape.as_ref();
let bbox_array = ndarray::Array3::from_shape_vec(
(
bbox_dims[0] as usize,
bbox_dims[1] as usize,
bbox_dims[2] as usize,
),
bbox_data.to_vec(),
)
.change_context(Error)
.attach_printable("Failed to create bbox ndarray")?;
let confidence_array = ndarray::Array3::from_shape_vec(
(
confidence_dims[0] as usize,
confidence_dims[1] as usize,
confidence_dims[2] as usize,
),
confidence_data.to_vec(),
)
.change_context(Error)
.attach_printable("Failed to create confidence ndarray")?;
let landmark_array = ndarray::Array3::from_shape_vec(
(
landmark_dims[0] as usize,
landmark_dims[1] as usize,
landmark_dims[2] as usize,
),
landmark_data.to_vec(),
)
.change_context(Error)
.attach_printable("Failed to create landmark ndarray")?;
Ok(FaceDetectionModelOutput {
bbox: bbox_array,
confidence: confidence_array,
landmark: landmark_array,
})
}
}

View File

@@ -1,10 +1,8 @@
use crate::errors::*;
use bounding_box::{Aabb2, nms::nms};
use error_stack::ResultExt;
use mnn_bridge::ndarray::*;
use nalgebra::{Point2, Vector2};
use ndarray_resize::NdFir;
use std::path::Path;
use std::collections::HashMap;
/// Configuration for face detection postprocessing
#[derive(Debug, Clone, PartialEq)]
@@ -32,30 +30,37 @@ impl FaceDetectionConfig {
self.threshold = threshold;
self
}
pub fn with_nms_threshold(mut self, nms_threshold: f32) -> Self {
self.nms_threshold = nms_threshold;
self
}
pub fn with_variances(mut self, variances: [f32; 2]) -> Self {
self.variances = variances;
self
}
pub fn with_steps(mut self, steps: Vec<usize>) -> Self {
self.steps = steps;
self
}
pub fn with_min_sizes(mut self, min_sizes: Vec<Vec<usize>>) -> Self {
self.min_sizes = min_sizes;
self
}
pub fn with_clip(mut self, clip: bool) -> Self {
self.clamp = clip;
self
}
pub fn with_input_width(mut self, input_width: usize) -> Self {
self.input_width = input_width;
self
}
pub fn with_input_height(mut self, input_height: usize) -> Self {
self.input_height = input_height;
self
@@ -77,18 +82,6 @@ impl Default for FaceDetectionConfig {
}
}
#[derive(Debug)]
pub struct FaceDetection {
handle: mnn_sync::SessionHandle,
}
#[derive(Debug, Clone, PartialEq)]
pub struct FaceDetectionModelOutput {
pub bbox: ndarray::Array3<f32>,
pub confidence: ndarray::Array3<f32>,
pub landmark: ndarray::Array3<f32>,
}
/// Represents the 5 facial landmarks detected by RetinaFace
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct FaceLandmarks {
@@ -99,6 +92,13 @@ pub struct FaceLandmarks {
pub right_mouth: Point2<f32>,
}
#[derive(Debug, Clone, PartialEq)]
pub struct FaceDetectionModelOutput {
pub bbox: ndarray::Array3<f32>,
pub confidence: ndarray::Array3<f32>,
pub landmark: ndarray::Array3<f32>,
}
#[derive(Debug, Clone, PartialEq)]
pub struct FaceDetectionProcessedOutput {
pub bbox: Vec<Aabb2<f32>>,
@@ -113,7 +113,13 @@ pub struct FaceDetectionOutput {
pub landmark: Vec<FaceLandmarks>,
}
fn generate_anchors(config: &FaceDetectionConfig) -> ndarray::Array2<f32> {
/// Raw model outputs that can be converted to FaceDetectionModelOutput
pub trait IntoModelOutput {
fn into_model_output(self) -> Result<FaceDetectionModelOutput>;
}
/// Generate anchors for RetinaFace model
pub fn generate_anchors(config: &FaceDetectionConfig) -> ndarray::Array2<f32> {
let mut anchors = Vec::new();
let feature_maps: Vec<(usize, usize)> = config
.steps
@@ -220,9 +226,7 @@ impl FaceDetectionModelOutput {
landmarks: decoded_landmarks,
})
}
}
impl FaceDetectionModelOutput {
pub fn print(&self, limit: usize) {
tracing::info!("Detected {} faces", self.bbox.shape()[1]);
@@ -246,214 +250,76 @@ impl FaceDetectionModelOutput {
}
}
pub struct FaceDetectionBuilder {
schedule_config: Option<mnn::ScheduleConfig>,
backend_config: Option<mnn::BackendConfig>,
model: mnn::Interpreter,
/// Apply Non-Maximum Suppression and convert to final output format
pub fn apply_nms_and_finalize(
processed: FaceDetectionProcessedOutput,
config: &FaceDetectionConfig,
image_size: (usize, usize), // (width, height)
) -> Result<FaceDetectionOutput> {
use itertools::Itertools;
let factor = Vector2::new(image_size.0 as f32, image_size.1 as f32);
let (boxes, scores, landmarks): (Vec<_>, Vec<_>, Vec<_>) = processed
.bbox
.iter()
.cloned()
.zip(processed.confidence.iter().cloned())
.zip(processed.landmarks.iter().cloned())
.sorted_by_key(|((_, score), _)| ordered_float::OrderedFloat(*score))
.map(|((b, s), l)| (b, s, l))
.multiunzip();
let keep_indices =
nms(&boxes, &scores, config.threshold, config.nms_threshold).change_context(Error)?;
let bboxes = boxes
.into_iter()
.enumerate()
.filter(|(i, _)| keep_indices.contains(i))
.flat_map(|(_, x)| x.denormalize(factor).try_cast::<usize>())
.collect();
let confidence = scores
.into_iter()
.enumerate()
.filter(|(i, _)| keep_indices.contains(i))
.map(|(_, score)| score)
.collect();
let landmark = landmarks
.into_iter()
.enumerate()
.filter(|(i, _)| keep_indices.contains(i))
.map(|(_, score)| score)
.collect();
Ok(FaceDetectionOutput {
bbox: bboxes,
confidence,
landmark,
})
}
impl FaceDetectionBuilder {
pub fn new(model: impl AsRef<[u8]>) -> Result<Self> {
Ok(Self {
schedule_config: None,
backend_config: None,
model: mnn::Interpreter::from_bytes(model.as_ref())
.map_err(|e| e.into_inner())
.change_context(Error)
.attach_printable("Failed to load model from bytes")?,
})
}
/// Common trait for face detection backends
pub trait FaceDetector {
/// Run inference on the model and return raw outputs
fn run_model(&mut self, image: ndarray::ArrayView3<u8>) -> Result<FaceDetectionModelOutput>;
pub fn with_forward_type(mut self, forward_type: mnn::ForwardType) -> Self {
self.schedule_config
.get_or_insert_default()
.set_type(forward_type);
self
}
pub fn with_schedule_config(mut self, config: mnn::ScheduleConfig) -> Self {
self.schedule_config = Some(config);
self
}
pub fn with_backend_config(mut self, config: mnn::BackendConfig) -> Self {
self.backend_config = Some(config);
self
}
pub fn build(self) -> Result<FaceDetection> {
let model = self.model;
let sc = self.schedule_config.unwrap_or_default();
let handle = mnn_sync::SessionHandle::new(model, sc)
.change_context(Error)
.attach_printable("Failed to create session handle")?;
Ok(FaceDetection { handle })
}
}
impl FaceDetection {
pub fn builder<T: AsRef<[u8]>>()
-> fn(T) -> std::result::Result<FaceDetectionBuilder, Report<Error>> {
FaceDetectionBuilder::new
}
pub fn new(path: impl AsRef<Path>) -> Result<Self> {
let model = std::fs::read(path)
.change_context(Error)
.attach_printable("Failed to read model file")?;
Self::new_from_bytes(&model)
}
pub fn new_from_bytes(model: &[u8]) -> Result<Self> {
tracing::info!("Loading face detection model from bytes");
let mut model = mnn::Interpreter::from_bytes(model)
.map_err(|e| e.into_inner())
.change_context(Error)
.attach_printable("Failed to load model from bytes")?;
model.set_session_mode(mnn::SessionMode::Release);
model
.set_cache_file("retinaface.cache", 128)
.change_context(Error)
.attach_printable("Failed to set cache file")?;
let bc = mnn::BackendConfig::default().with_memory_mode(mnn::MemoryMode::High);
let sc = mnn::ScheduleConfig::new()
.with_type(mnn::ForwardType::Metal)
.with_backend_config(bc);
tracing::info!("Creating session handle for face detection model");
let handle = mnn_sync::SessionHandle::new(model, sc)
.change_context(Error)
.attach_printable("Failed to create session handle")?;
Ok(FaceDetection { handle })
}
pub fn detect_faces(
&self,
/// Detect faces with full pipeline including postprocessing
fn detect_faces(
&mut self,
image: ndarray::ArrayView3<u8>,
config: FaceDetectionConfig,
) -> Result<FaceDetectionOutput> {
let (height, width, _channels) = image.dim();
let output = self
.run_models(image)
.run_model(image)
.change_context(Error)
.attach_printable("Failed to detect faces")?;
// denormalize the bounding boxes
let factor = Vector2::new(width as f32, height as f32);
let mut processed = output
let processed = output
.postprocess(&config)
.attach_printable("Failed to postprocess")?;
use itertools::Itertools;
let (boxes, scores, landmarks): (Vec<_>, Vec<_>, Vec<_>) = processed
.bbox
.iter()
.cloned()
.zip(processed.confidence.iter().cloned())
.zip(processed.landmarks.iter().cloned())
.sorted_by_key(|((_, score), _)| ordered_float::OrderedFloat(*score))
.map(|((b, s), l)| (b, s, l))
.multiunzip();
let keep_indices =
nms(&boxes, &scores, config.threshold, config.nms_threshold).change_context(Error)?;
let bboxes = boxes
.into_iter()
.enumerate()
.filter(|(i, _)| keep_indices.contains(i))
.flat_map(|(_, x)| x.denormalize(factor).try_cast::<usize>())
.collect();
let confidence = scores
.into_iter()
.enumerate()
.filter(|(i, _)| keep_indices.contains(i))
.map(|(_, score)| score)
.collect();
let landmark = landmarks
.into_iter()
.enumerate()
.filter(|(i, _)| keep_indices.contains(i))
.map(|(_, score)| score)
.collect();
Ok(FaceDetectionOutput {
bbox: bboxes,
confidence,
landmark,
})
}
pub fn run_models(&self, image: ndarray::ArrayView3<u8>) -> Result<FaceDetectionModelOutput> {
#[rustfmt::skip]
let mut resized = image
.fast_resize(1024, 1024, None)
.change_context(Error)?
.mapv(|f| f as f32)
.tap_mut(|arr| {
arr.axis_iter_mut(ndarray::Axis(2))
.zip([104, 117, 123])
.for_each(|(mut array, pixel)| {
let pixel = pixel as f32;
array.map_inplace(|v| *v -= pixel);
});
})
.permuted_axes((2, 0, 1))
.insert_axis(ndarray::Axis(0))
.as_standard_layout()
.into_owned();
use ::tap::*;
let output = self
.handle
.run(move |sr| {
let tensor = resized
.as_mnn_tensor_mut()
.attach_printable("Failed to convert ndarray to mnn tensor")
.change_context(mnn::error::ErrorKind::TensorError)?;
tracing::trace!("Image Tensor shape: {:?}", tensor.shape());
let (intptr, session) = sr.both_mut();
tracing::trace!("Copying input tensor to host");
unsafe {
let mut input = intptr.input_unresized::<f32>(session, "input")?;
tracing::trace!("Input shape: {:?}", input.shape());
intptr.resize_tensor_by_nchw::<mnn::View<&mut f32>, _>(
input.view_mut(),
1,
3,
1024,
1024,
);
}
intptr.resize_session(session);
let mut input = intptr.input::<f32>(session, "input")?;
tracing::trace!("Input shape: {:?}", input.shape());
input.copy_from_host_tensor(tensor.view())?;
tracing::info!("Running face detection session");
intptr.run_session(&session)?;
let output_tensor = intptr
.output::<f32>(&session, "bbox")?
.create_host_tensor_from_device(true)
.as_ndarray()
.to_owned();
tracing::trace!("Output Bbox: \t\t{:?}", output_tensor.shape());
let output_confidence = intptr
.output::<f32>(&session, "confidence")?
.create_host_tensor_from_device(true)
.as_ndarray::<ndarray::Ix3>()
.to_owned();
tracing::trace!("Output Confidence: \t{:?}", output_confidence.shape());
let output_landmark = intptr
.output::<f32>(&session, "landmark")?
.create_host_tensor_from_device(true)
.as_ndarray::<ndarray::Ix3>()
.to_owned();
tracing::trace!("Output Landmark: \t{:?}", output_landmark.shape());
Ok(FaceDetectionModelOutput {
bbox: output_tensor,
confidence: output_confidence,
landmark: output_landmark,
})
})
.map_err(|e| e.into_inner())
.change_context(Error)?;
Ok(output)
apply_nms_and_finalize(processed, &config, (width, height))
}
}