feat: Added stuff
Some checks failed
build / checks-matrix (push) Successful in 19m25s
build / checks-build (push) Has been cancelled
build / codecov (push) Has been cancelled
docs / docs (push) Has been cancelled

This commit is contained in:
uttarayan21
2025-08-18 11:31:03 +05:30
parent 2d2309837f
commit 33afbfc2b8
18 changed files with 987 additions and 375 deletions

View File

@@ -0,0 +1,264 @@
use crate::errors::*;
use crate::facedet::postprocess::*;
use error_stack::ResultExt;
use ndarray_resize::NdFir;
use ort::{
execution_providers::{
CPUExecutionProvider, CoreMLExecutionProvider, ExecutionProviderDispatch,
},
session::{Session, builder::GraphOptimizationLevel},
value::Tensor,
};
use std::path::Path;
#[derive(Debug)]
pub struct FaceDetection {
session: Session,
}
pub struct FaceDetectionBuilder {
model_data: Vec<u8>,
execution_providers: Option<Vec<ExecutionProviderDispatch>>,
intra_threads: Option<usize>,
inter_threads: Option<usize>,
}
impl FaceDetectionBuilder {
pub fn new(model: impl AsRef<[u8]>) -> crate::errors::Result<Self> {
Ok(Self {
model_data: model.as_ref().to_vec(),
execution_providers: None,
intra_threads: None,
inter_threads: None,
})
}
pub fn with_execution_providers(mut self, providers: Vec<String>) -> Self {
let execution_providers: Vec<ExecutionProviderDispatch> = providers
.into_iter()
.filter_map(|provider| match provider.as_str() {
"cpu" | "CPU" => Some(CPUExecutionProvider::default().build()),
#[cfg(target_os = "macos")]
"coreml" | "CoreML" => Some(CoreMLExecutionProvider::default().build()),
_ => {
tracing::warn!("Unknown execution provider: {}", provider);
None
}
})
.collect();
if !execution_providers.is_empty() {
self.execution_providers = Some(execution_providers);
} else {
tracing::warn!("No valid execution providers found, falling back to CPU");
self.execution_providers = Some(vec![CPUExecutionProvider::default().build()]);
}
self
}
pub fn with_intra_threads(mut self, threads: usize) -> Self {
self.intra_threads = Some(threads);
self
}
pub fn with_inter_threads(mut self, threads: usize) -> Self {
self.inter_threads = Some(threads);
self
}
pub fn build(self) -> crate::errors::Result<FaceDetection> {
let mut session_builder = Session::builder()
.change_context(Error)
.attach_printable("Failed to create session builder")?;
// Set execution providers
if let Some(providers) = self.execution_providers {
session_builder = session_builder
.with_execution_providers(providers)
.change_context(Error)
.attach_printable("Failed to set execution providers")?;
} else {
// Default to CPU
session_builder = session_builder
.with_execution_providers([CPUExecutionProvider::default().build()])
.change_context(Error)
.attach_printable("Failed to set default CPU execution provider")?;
}
// Set threading options
if let Some(threads) = self.intra_threads {
session_builder = session_builder
.with_intra_threads(threads)
.change_context(Error)
.attach_printable("Failed to set intra threads")?;
}
if let Some(threads) = self.inter_threads {
session_builder = session_builder
.with_inter_threads(threads)
.change_context(Error)
.attach_printable("Failed to set inter threads")?;
}
// Set optimization level
session_builder = session_builder
.with_optimization_level(GraphOptimizationLevel::Level3)
.change_context(Error)
.attach_printable("Failed to set optimization level")?;
// Create session from model bytes
let session = session_builder
.commit_from_memory(&self.model_data)
.change_context(Error)
.attach_printable("Failed to create ORT session from model bytes")?;
tracing::info!("Successfully created ORT RetinaFace session");
Ok(FaceDetection { session })
}
}
impl FaceDetection {
pub fn builder<T: AsRef<[u8]>>()
-> fn(T) -> std::result::Result<FaceDetectionBuilder, error_stack::Report<crate::errors::Error>>
{
FaceDetectionBuilder::new
}
pub fn new(path: impl AsRef<Path>) -> crate::errors::Result<Self> {
let model = std::fs::read(path)
.change_context(Error)
.attach_printable("Failed to read model file")?;
Self::new_from_bytes(&model)
}
pub fn new_from_bytes(model: &[u8]) -> crate::errors::Result<Self> {
tracing::info!("Loading ORT RetinaFace model from bytes");
Self::builder()(model)?.build()
}
}
impl FaceDetector for FaceDetection {
fn run_model(
&mut self,
image: ndarray::ArrayView3<u8>,
) -> crate::errors::Result<FaceDetectionModelOutput> {
// Resize image to 1024x1024
let mut resized = image
.fast_resize(1024, 1024, None)
.change_context(Error)
.attach_printable("Failed to resize image")?
.mapv(|f| f as f32);
// Apply mean subtraction: [104, 117, 123] for BGR format
resized
.axis_iter_mut(ndarray::Axis(2))
.zip([104.0, 117.0, 123.0])
.for_each(|(mut array, mean)| {
array.map_inplace(|v| *v -= mean);
});
// Convert from HWC to NCHW format (add batch dimension and transpose)
let input_tensor = resized
.permuted_axes((2, 0, 1))
.insert_axis(ndarray::Axis(0))
.as_standard_layout()
.into_owned();
tracing::trace!("Input tensor shape: {:?}", input_tensor.shape());
// Create ORT input tensor
let input_value = Tensor::from_array(input_tensor)
.change_context(Error)
.attach_printable("Failed to create input tensor")?;
// Run inference
tracing::debug!("Running ORT RetinaFace inference");
let outputs = self
.session
.run(ort::inputs!["input" => input_value])
.change_context(Error)
.attach_printable("Failed to run inference")?;
// Extract outputs by name
let bbox_output = outputs
.get("bbox")
.ok_or(Error)
.attach_printable("Missing bbox output from model")?
.try_extract_tensor::<f32>()
.change_context(Error)
.attach_printable("Failed to extract bbox tensor")?;
let confidence_output = outputs
.get("confidence")
.ok_or(Error)
.attach_printable("Missing confidence output from model")?
.try_extract_tensor::<f32>()
.change_context(Error)
.attach_printable("Failed to extract confidence tensor")?;
let landmark_output = outputs
.get("landmark")
.ok_or(Error)
.attach_printable("Missing landmark output from model")?
.try_extract_tensor::<f32>()
.change_context(Error)
.attach_printable("Failed to extract landmark tensor")?;
// Get tensor shapes and data
let (bbox_shape, bbox_data) = bbox_output;
let (confidence_shape, confidence_data) = confidence_output;
let (landmark_shape, landmark_data) = landmark_output;
tracing::trace!(
"Output shapes - bbox: {:?}, confidence: {:?}, landmark: {:?}",
bbox_shape,
confidence_shape,
landmark_shape
);
// Convert to ndarray format
let bbox_dims = bbox_shape.as_ref();
let confidence_dims = confidence_shape.as_ref();
let landmark_dims = landmark_shape.as_ref();
let bbox_array = ndarray::Array3::from_shape_vec(
(
bbox_dims[0] as usize,
bbox_dims[1] as usize,
bbox_dims[2] as usize,
),
bbox_data.to_vec(),
)
.change_context(Error)
.attach_printable("Failed to create bbox ndarray")?;
let confidence_array = ndarray::Array3::from_shape_vec(
(
confidence_dims[0] as usize,
confidence_dims[1] as usize,
confidence_dims[2] as usize,
),
confidence_data.to_vec(),
)
.change_context(Error)
.attach_printable("Failed to create confidence ndarray")?;
let landmark_array = ndarray::Array3::from_shape_vec(
(
landmark_dims[0] as usize,
landmark_dims[1] as usize,
landmark_dims[2] as usize,
),
landmark_data.to_vec(),
)
.change_context(Error)
.attach_printable("Failed to create landmark ndarray")?;
Ok(FaceDetectionModelOutput {
bbox: bbox_array,
confidence: confidence_array,
landmark: landmark_array,
})
}
}