feat: Added stuff
Some checks failed
build / checks-matrix (push) Successful in 19m25s
build / checks-build (push) Has been cancelled
build / codecov (push) Has been cancelled
docs / docs (push) Has been cancelled

This commit is contained in:
uttarayan21
2025-08-18 11:31:03 +05:30
parent 2d2309837f
commit 33afbfc2b8
18 changed files with 987 additions and 375 deletions

3
.gitmodules vendored Normal file
View File

@@ -0,0 +1,3 @@
[submodule "rfcs"]
path = rfcs
url = git@github.com:aftershootco/rfcs.git

199
README.md
View File

@@ -1,3 +1,198 @@
# Face Detection
# Face Detection and Embedding
Rust programs to do face detection and face embedding
A high-performance Rust implementation for face detection and face embedding generation using neural networks.
## Overview
This project provides a complete face detection and recognition pipeline with the following capabilities:
- **Face Detection**: Detect faces in images using RetinaFace model
- **Face Embedding**: Generate face embeddings using FaceNet model
- **Multiple Backends**: Support for both MNN and ONNX runtime execution
- **Hardware Acceleration**: Metal, CoreML, and OpenCL support on compatible platforms
- **Modular Design**: Workspace architecture with reusable components
## Features
- 🔍 **Accurate Face Detection** - Uses RetinaFace model for robust face detection
- 🧠 **Face Embeddings** - Generate 512-dimensional face embeddings with FaceNet
-**High Performance** - Optimized with hardware acceleration (Metal, CoreML)
- 🔧 **Flexible Configuration** - Adjustable detection thresholds and NMS parameters
- 📦 **Modular Architecture** - Reusable components for image processing and bounding boxes
- 🖼️ **Visual Output** - Draw bounding boxes on detected faces
## Architecture
The project is organized as a Rust workspace with the following components:
- **`detector`** - Main face detection and embedding application
- **`bounding-box`** - Geometric operations and drawing utilities for bounding boxes
- **`ndarray-image`** - Conversion utilities between ndarray and image formats
- **`ndarray-resize`** - Fast image resizing operations on ndarray data
## Models
The project includes pre-trained neural network models:
- **RetinaFace** - Face detection model (`.mnn` and `.onnx` formats)
- **FaceNet** - Face embedding model (`.mnn` and `.onnx` formats)
## Usage
### Basic Face Detection
```bash
# Detect faces using MNN backend (default)
cargo run --release detect path/to/image.jpg
# Detect faces using ONNX Runtime backend
cargo run --release detect --executor onnx path/to/image.jpg
# Save output with bounding boxes drawn
cargo run --release detect --output detected.jpg path/to/image.jpg
# Adjust detection sensitivity
cargo run --release detect --threshold 0.9 --nms-threshold 0.4 path/to/image.jpg
```
### Backend Selection
The project supports two inference backends:
- **MNN Backend** (default): High-performance inference framework with Metal/CoreML support
- **ONNX Runtime Backend**: Cross-platform ML inference with broad hardware support
```bash
# Use MNN backend with Metal acceleration (macOS)
cargo run --release detect --executor mnn --forward-type metal path/to/image.jpg
# Use ONNX Runtime backend
cargo run --release detect --executor onnx path/to/image.jpg
```
### Command Line Options
```bash
# Face detection with custom parameters
cargo run --release detect [OPTIONS] <IMAGE>
Options:
-m, --model <MODEL> Custom model path
-M, --model-type <MODEL_TYPE> Model type [default: retina-face]
-o, --output <OUTPUT> Output image path
-e, --executor <EXECUTOR> Inference backend [mnn, onnx]
-f, --forward-type <FORWARD_TYPE> MNN execution backend [default: cpu]
-t, --threshold <THRESHOLD> Detection threshold [default: 0.8]
-n, --nms-threshold <NMS_THRESHOLD> NMS threshold [default: 0.3]
```
### Quick Start
```bash
# Build the project
cargo build --release
# Run face detection on sample image
just run
# or
cargo run --release detect ./1000066593.jpg
```
## Hardware Acceleration
### MNN Backend
The MNN backend supports various execution backends:
- **CPU** - Default, works on all platforms
- **Metal** - macOS GPU acceleration
- **CoreML** - macOS/iOS neural engine acceleration
- **OpenCL** - Cross-platform GPU acceleration
```bash
# Use Metal acceleration on macOS
cargo run --release detect --executor mnn --forward-type metal path/to/image.jpg
# Use CoreML on macOS/iOS
cargo run --release detect --executor mnn --forward-type coreml path/to/image.jpg
```
### ONNX Runtime Backend
The ONNX Runtime backend automatically selects the best available execution provider based on your system configuration.
## Development
### Prerequisites
- Rust 2024 edition
- MNN runtime (automatically linked)
- ONNX runtime (for ONNX backend)
### Building
```bash
# Standard build
cargo build
# Release build with optimizations
cargo build --release
# Run tests
cargo test
```
### Project Structure
```
├── src/
│ ├── facedet/ # Face detection modules
│ │ ├── mnn/ # MNN backend implementations
│ │ ├── ort/ # ONNX Runtime backend implementations
│ │ └── postprocess.rs # Shared postprocessing logic
│ ├── faceembed/ # Face embedding modules
│ │ ├── mnn/ # MNN backend implementations
│ │ └── ort/ # ONNX Runtime backend implementations
│ ├── cli.rs # Command line interface
│ └── main.rs # Application entry point
├── models/ # Neural network models (.mnn and .onnx)
├── bounding-box/ # Bounding box utilities
├── ndarray-image/ # Image conversion utilities
└── ndarray-resize/ # Image resizing utilities
```
### Backend Architecture
The codebase is organized to support multiple inference backends:
- **Common interfaces**: `FaceDetector` and `FaceEmbedder` traits provide unified APIs
- **Shared postprocessing**: Common logic for anchor generation, NMS, and coordinate decoding
- **Backend-specific implementations**: Separate modules for MNN and ONNX Runtime
- **Modular design**: Easy to add new backends by implementing the common traits
## License
MIT License
## Dependencies
Key dependencies include:
- **MNN** - High-performance neural network inference framework (MNN backend)
- **ONNX Runtime** - Cross-platform ML inference (ORT backend)
- **ndarray** - N-dimensional array processing
- **image** - Image processing and I/O
- **clap** - Command line argument parsing
- **bounding-box** - Geometric operations for face detection
- **error-stack** - Structured error handling
### Backend Status
-**MNN Backend**: Fully implemented with hardware acceleration support
- 🚧 **ONNX Runtime Backend**: Framework implemented, inference logic to be completed
*Note: The ORT backend currently provides the framework but requires completion of the inference implementation.*
---
*Built with Rust for maximum performance and safety in computer vision applications.*

1
rfcs Submodule

Submodule rfcs added at ad85f4c819

View File

@@ -48,6 +48,8 @@ pub struct Detect {
pub model_type: Models,
#[clap(short, long)]
pub output: Option<PathBuf>,
#[clap(short = 'e', long)]
pub executor: Option<Executor>,
#[clap(short, long, default_value = "cpu")]
pub forward_type: mnn::ForwardType,
#[clap(short, long, default_value_t = 0.8)]

View File

@@ -1,2 +1,24 @@
pub mod retinaface;
pub mod mnn;
pub mod ort;
pub mod postprocess;
pub mod yolo;
// Re-export common types and traits
pub use postprocess::{
FaceDetectionConfig, FaceDetectionModelOutput, FaceDetectionOutput,
FaceDetectionProcessedOutput, FaceDetector, FaceLandmarks,
};
// Convenience type aliases for different backends
pub mod retinaface {
pub use crate::facedet::mnn::retinaface as mnn;
pub use crate::facedet::ort::retinaface as ort;
// Re-export common types
pub use crate::facedet::postprocess::{
FaceDetectionConfig, FaceDetectionOutput, FaceDetector, FaceLandmarks,
};
}
// Default to MNN implementation for backward compatibility
pub use mnn::retinaface::FaceDetection;

3
src/facedet/mnn/mod.rs Normal file
View File

@@ -0,0 +1,3 @@
pub mod retinaface;
pub use retinaface::FaceDetection;

View File

@@ -0,0 +1,174 @@
use crate::errors::*;
use crate::facedet::postprocess::*;
use error_stack::ResultExt;
use mnn_bridge::ndarray::*;
use ndarray_resize::NdFir;
use std::path::Path;
#[derive(Debug)]
pub struct FaceDetection {
handle: mnn_sync::SessionHandle,
}
pub struct FaceDetectionBuilder {
schedule_config: Option<mnn::ScheduleConfig>,
backend_config: Option<mnn::BackendConfig>,
model: mnn::Interpreter,
}
impl FaceDetectionBuilder {
pub fn new(model: impl AsRef<[u8]>) -> Result<Self> {
Ok(Self {
schedule_config: None,
backend_config: None,
model: mnn::Interpreter::from_bytes(model.as_ref())
.map_err(|e| e.into_inner())
.change_context(Error)
.attach_printable("Failed to load model from bytes")?,
})
}
pub fn with_forward_type(mut self, forward_type: mnn::ForwardType) -> Self {
self.schedule_config
.get_or_insert_default()
.set_type(forward_type);
self
}
pub fn with_schedule_config(mut self, config: mnn::ScheduleConfig) -> Self {
self.schedule_config = Some(config);
self
}
pub fn with_backend_config(mut self, config: mnn::BackendConfig) -> Self {
self.backend_config = Some(config);
self
}
pub fn build(self) -> Result<FaceDetection> {
let model = self.model;
let sc = self.schedule_config.unwrap_or_default();
let handle = mnn_sync::SessionHandle::new(model, sc)
.change_context(Error)
.attach_printable("Failed to create session handle")?;
Ok(FaceDetection { handle })
}
}
impl FaceDetection {
pub fn builder<T: AsRef<[u8]>>()
-> fn(T) -> std::result::Result<FaceDetectionBuilder, Report<Error>> {
FaceDetectionBuilder::new
}
pub fn new(path: impl AsRef<Path>) -> Result<Self> {
let model = std::fs::read(path)
.change_context(Error)
.attach_printable("Failed to read model file")?;
Self::new_from_bytes(&model)
}
pub fn new_from_bytes(model: &[u8]) -> Result<Self> {
tracing::info!("Loading face detection model from bytes");
let mut model = mnn::Interpreter::from_bytes(model)
.map_err(|e| e.into_inner())
.change_context(Error)
.attach_printable("Failed to load model from bytes")?;
model.set_session_mode(mnn::SessionMode::Release);
model
.set_cache_file("retinaface.cache", 128)
.change_context(Error)
.attach_printable("Failed to set cache file")?;
let bc = mnn::BackendConfig::default().with_memory_mode(mnn::MemoryMode::High);
let sc = mnn::ScheduleConfig::new()
.with_type(mnn::ForwardType::Metal)
.with_backend_config(bc);
tracing::info!("Creating session handle for face detection model");
let handle = mnn_sync::SessionHandle::new(model, sc)
.change_context(Error)
.attach_printable("Failed to create session handle")?;
Ok(FaceDetection { handle })
}
}
impl FaceDetector for FaceDetection {
fn run_model(&mut self, image: ndarray::ArrayView3<u8>) -> Result<FaceDetectionModelOutput> {
#[rustfmt::skip]
let mut resized = image
.fast_resize(1024, 1024, None)
.change_context(Error)?
.mapv(|f| f as f32);
// Apply mean subtraction: [104, 117, 123]
resized
.axis_iter_mut(ndarray::Axis(2))
.zip([104, 117, 123])
.for_each(|(mut array, pixel)| {
let pixel = pixel as f32;
array.map_inplace(|v| *v -= pixel);
});
let mut resized = resized
.permuted_axes((2, 0, 1))
.insert_axis(ndarray::Axis(0))
.as_standard_layout()
.into_owned();
use ::tap::*;
let output = self
.handle
.run(move |sr| {
let tensor = resized
.as_mnn_tensor_mut()
.attach_printable("Failed to convert ndarray to mnn tensor")
.change_context(mnn::error::ErrorKind::TensorError)?;
tracing::trace!("Image Tensor shape: {:?}", tensor.shape());
let (intptr, session) = sr.both_mut();
tracing::trace!("Copying input tensor to host");
unsafe {
let mut input = intptr.input_unresized::<f32>(session, "input")?;
tracing::trace!("Input shape: {:?}", input.shape());
intptr.resize_tensor_by_nchw::<mnn::View<&mut f32>, _>(
input.view_mut(),
1,
3,
1024,
1024,
);
}
intptr.resize_session(session);
let mut input = intptr.input::<f32>(session, "input")?;
tracing::trace!("Input shape: {:?}", input.shape());
input.copy_from_host_tensor(tensor.view())?;
tracing::info!("Running face detection session");
intptr.run_session(&session)?;
let output_tensor = intptr
.output::<f32>(&session, "bbox")?
.create_host_tensor_from_device(true)
.as_ndarray()
.to_owned();
tracing::trace!("Output Bbox: \t\t{:?}", output_tensor.shape());
let output_confidence = intptr
.output::<f32>(&session, "confidence")?
.create_host_tensor_from_device(true)
.as_ndarray::<ndarray::Ix3>()
.to_owned();
tracing::trace!("Output Confidence: \t{:?}", output_confidence.shape());
let output_landmark = intptr
.output::<f32>(&session, "landmark")?
.create_host_tensor_from_device(true)
.as_ndarray::<ndarray::Ix3>()
.to_owned();
tracing::trace!("Output Landmark: \t{:?}", output_landmark.shape());
Ok(FaceDetectionModelOutput {
bbox: output_tensor,
confidence: output_confidence,
landmark: output_landmark,
})
})
.map_err(|e| e.into_inner())
.change_context(Error)?;
Ok(output)
}
}

3
src/facedet/ort/mod.rs Normal file
View File

@@ -0,0 +1,3 @@
pub mod retinaface;
pub use retinaface::FaceDetection;

View File

@@ -0,0 +1,264 @@
use crate::errors::*;
use crate::facedet::postprocess::*;
use error_stack::ResultExt;
use ndarray_resize::NdFir;
use ort::{
execution_providers::{
CPUExecutionProvider, CoreMLExecutionProvider, ExecutionProviderDispatch,
},
session::{Session, builder::GraphOptimizationLevel},
value::Tensor,
};
use std::path::Path;
#[derive(Debug)]
pub struct FaceDetection {
session: Session,
}
pub struct FaceDetectionBuilder {
model_data: Vec<u8>,
execution_providers: Option<Vec<ExecutionProviderDispatch>>,
intra_threads: Option<usize>,
inter_threads: Option<usize>,
}
impl FaceDetectionBuilder {
pub fn new(model: impl AsRef<[u8]>) -> crate::errors::Result<Self> {
Ok(Self {
model_data: model.as_ref().to_vec(),
execution_providers: None,
intra_threads: None,
inter_threads: None,
})
}
pub fn with_execution_providers(mut self, providers: Vec<String>) -> Self {
let execution_providers: Vec<ExecutionProviderDispatch> = providers
.into_iter()
.filter_map(|provider| match provider.as_str() {
"cpu" | "CPU" => Some(CPUExecutionProvider::default().build()),
#[cfg(target_os = "macos")]
"coreml" | "CoreML" => Some(CoreMLExecutionProvider::default().build()),
_ => {
tracing::warn!("Unknown execution provider: {}", provider);
None
}
})
.collect();
if !execution_providers.is_empty() {
self.execution_providers = Some(execution_providers);
} else {
tracing::warn!("No valid execution providers found, falling back to CPU");
self.execution_providers = Some(vec![CPUExecutionProvider::default().build()]);
}
self
}
pub fn with_intra_threads(mut self, threads: usize) -> Self {
self.intra_threads = Some(threads);
self
}
pub fn with_inter_threads(mut self, threads: usize) -> Self {
self.inter_threads = Some(threads);
self
}
pub fn build(self) -> crate::errors::Result<FaceDetection> {
let mut session_builder = Session::builder()
.change_context(Error)
.attach_printable("Failed to create session builder")?;
// Set execution providers
if let Some(providers) = self.execution_providers {
session_builder = session_builder
.with_execution_providers(providers)
.change_context(Error)
.attach_printable("Failed to set execution providers")?;
} else {
// Default to CPU
session_builder = session_builder
.with_execution_providers([CPUExecutionProvider::default().build()])
.change_context(Error)
.attach_printable("Failed to set default CPU execution provider")?;
}
// Set threading options
if let Some(threads) = self.intra_threads {
session_builder = session_builder
.with_intra_threads(threads)
.change_context(Error)
.attach_printable("Failed to set intra threads")?;
}
if let Some(threads) = self.inter_threads {
session_builder = session_builder
.with_inter_threads(threads)
.change_context(Error)
.attach_printable("Failed to set inter threads")?;
}
// Set optimization level
session_builder = session_builder
.with_optimization_level(GraphOptimizationLevel::Level3)
.change_context(Error)
.attach_printable("Failed to set optimization level")?;
// Create session from model bytes
let session = session_builder
.commit_from_memory(&self.model_data)
.change_context(Error)
.attach_printable("Failed to create ORT session from model bytes")?;
tracing::info!("Successfully created ORT RetinaFace session");
Ok(FaceDetection { session })
}
}
impl FaceDetection {
pub fn builder<T: AsRef<[u8]>>()
-> fn(T) -> std::result::Result<FaceDetectionBuilder, error_stack::Report<crate::errors::Error>>
{
FaceDetectionBuilder::new
}
pub fn new(path: impl AsRef<Path>) -> crate::errors::Result<Self> {
let model = std::fs::read(path)
.change_context(Error)
.attach_printable("Failed to read model file")?;
Self::new_from_bytes(&model)
}
pub fn new_from_bytes(model: &[u8]) -> crate::errors::Result<Self> {
tracing::info!("Loading ORT RetinaFace model from bytes");
Self::builder()(model)?.build()
}
}
impl FaceDetector for FaceDetection {
fn run_model(
&mut self,
image: ndarray::ArrayView3<u8>,
) -> crate::errors::Result<FaceDetectionModelOutput> {
// Resize image to 1024x1024
let mut resized = image
.fast_resize(1024, 1024, None)
.change_context(Error)
.attach_printable("Failed to resize image")?
.mapv(|f| f as f32);
// Apply mean subtraction: [104, 117, 123] for BGR format
resized
.axis_iter_mut(ndarray::Axis(2))
.zip([104.0, 117.0, 123.0])
.for_each(|(mut array, mean)| {
array.map_inplace(|v| *v -= mean);
});
// Convert from HWC to NCHW format (add batch dimension and transpose)
let input_tensor = resized
.permuted_axes((2, 0, 1))
.insert_axis(ndarray::Axis(0))
.as_standard_layout()
.into_owned();
tracing::trace!("Input tensor shape: {:?}", input_tensor.shape());
// Create ORT input tensor
let input_value = Tensor::from_array(input_tensor)
.change_context(Error)
.attach_printable("Failed to create input tensor")?;
// Run inference
tracing::debug!("Running ORT RetinaFace inference");
let outputs = self
.session
.run(ort::inputs!["input" => input_value])
.change_context(Error)
.attach_printable("Failed to run inference")?;
// Extract outputs by name
let bbox_output = outputs
.get("bbox")
.ok_or(Error)
.attach_printable("Missing bbox output from model")?
.try_extract_tensor::<f32>()
.change_context(Error)
.attach_printable("Failed to extract bbox tensor")?;
let confidence_output = outputs
.get("confidence")
.ok_or(Error)
.attach_printable("Missing confidence output from model")?
.try_extract_tensor::<f32>()
.change_context(Error)
.attach_printable("Failed to extract confidence tensor")?;
let landmark_output = outputs
.get("landmark")
.ok_or(Error)
.attach_printable("Missing landmark output from model")?
.try_extract_tensor::<f32>()
.change_context(Error)
.attach_printable("Failed to extract landmark tensor")?;
// Get tensor shapes and data
let (bbox_shape, bbox_data) = bbox_output;
let (confidence_shape, confidence_data) = confidence_output;
let (landmark_shape, landmark_data) = landmark_output;
tracing::trace!(
"Output shapes - bbox: {:?}, confidence: {:?}, landmark: {:?}",
bbox_shape,
confidence_shape,
landmark_shape
);
// Convert to ndarray format
let bbox_dims = bbox_shape.as_ref();
let confidence_dims = confidence_shape.as_ref();
let landmark_dims = landmark_shape.as_ref();
let bbox_array = ndarray::Array3::from_shape_vec(
(
bbox_dims[0] as usize,
bbox_dims[1] as usize,
bbox_dims[2] as usize,
),
bbox_data.to_vec(),
)
.change_context(Error)
.attach_printable("Failed to create bbox ndarray")?;
let confidence_array = ndarray::Array3::from_shape_vec(
(
confidence_dims[0] as usize,
confidence_dims[1] as usize,
confidence_dims[2] as usize,
),
confidence_data.to_vec(),
)
.change_context(Error)
.attach_printable("Failed to create confidence ndarray")?;
let landmark_array = ndarray::Array3::from_shape_vec(
(
landmark_dims[0] as usize,
landmark_dims[1] as usize,
landmark_dims[2] as usize,
),
landmark_data.to_vec(),
)
.change_context(Error)
.attach_printable("Failed to create landmark ndarray")?;
Ok(FaceDetectionModelOutput {
bbox: bbox_array,
confidence: confidence_array,
landmark: landmark_array,
})
}
}

View File

@@ -1,10 +1,8 @@
use crate::errors::*;
use bounding_box::{Aabb2, nms::nms};
use error_stack::ResultExt;
use mnn_bridge::ndarray::*;
use nalgebra::{Point2, Vector2};
use ndarray_resize::NdFir;
use std::path::Path;
use std::collections::HashMap;
/// Configuration for face detection postprocessing
#[derive(Debug, Clone, PartialEq)]
@@ -32,30 +30,37 @@ impl FaceDetectionConfig {
self.threshold = threshold;
self
}
pub fn with_nms_threshold(mut self, nms_threshold: f32) -> Self {
self.nms_threshold = nms_threshold;
self
}
pub fn with_variances(mut self, variances: [f32; 2]) -> Self {
self.variances = variances;
self
}
pub fn with_steps(mut self, steps: Vec<usize>) -> Self {
self.steps = steps;
self
}
pub fn with_min_sizes(mut self, min_sizes: Vec<Vec<usize>>) -> Self {
self.min_sizes = min_sizes;
self
}
pub fn with_clip(mut self, clip: bool) -> Self {
self.clamp = clip;
self
}
pub fn with_input_width(mut self, input_width: usize) -> Self {
self.input_width = input_width;
self
}
pub fn with_input_height(mut self, input_height: usize) -> Self {
self.input_height = input_height;
self
@@ -77,18 +82,6 @@ impl Default for FaceDetectionConfig {
}
}
#[derive(Debug)]
pub struct FaceDetection {
handle: mnn_sync::SessionHandle,
}
#[derive(Debug, Clone, PartialEq)]
pub struct FaceDetectionModelOutput {
pub bbox: ndarray::Array3<f32>,
pub confidence: ndarray::Array3<f32>,
pub landmark: ndarray::Array3<f32>,
}
/// Represents the 5 facial landmarks detected by RetinaFace
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct FaceLandmarks {
@@ -99,6 +92,13 @@ pub struct FaceLandmarks {
pub right_mouth: Point2<f32>,
}
#[derive(Debug, Clone, PartialEq)]
pub struct FaceDetectionModelOutput {
pub bbox: ndarray::Array3<f32>,
pub confidence: ndarray::Array3<f32>,
pub landmark: ndarray::Array3<f32>,
}
#[derive(Debug, Clone, PartialEq)]
pub struct FaceDetectionProcessedOutput {
pub bbox: Vec<Aabb2<f32>>,
@@ -113,7 +113,13 @@ pub struct FaceDetectionOutput {
pub landmark: Vec<FaceLandmarks>,
}
fn generate_anchors(config: &FaceDetectionConfig) -> ndarray::Array2<f32> {
/// Raw model outputs that can be converted to FaceDetectionModelOutput
pub trait IntoModelOutput {
fn into_model_output(self) -> Result<FaceDetectionModelOutput>;
}
/// Generate anchors for RetinaFace model
pub fn generate_anchors(config: &FaceDetectionConfig) -> ndarray::Array2<f32> {
let mut anchors = Vec::new();
let feature_maps: Vec<(usize, usize)> = config
.steps
@@ -220,9 +226,7 @@ impl FaceDetectionModelOutput {
landmarks: decoded_landmarks,
})
}
}
impl FaceDetectionModelOutput {
pub fn print(&self, limit: usize) {
tracing::info!("Detected {} faces", self.bbox.shape()[1]);
@@ -246,214 +250,76 @@ impl FaceDetectionModelOutput {
}
}
pub struct FaceDetectionBuilder {
schedule_config: Option<mnn::ScheduleConfig>,
backend_config: Option<mnn::BackendConfig>,
model: mnn::Interpreter,
/// Apply Non-Maximum Suppression and convert to final output format
pub fn apply_nms_and_finalize(
processed: FaceDetectionProcessedOutput,
config: &FaceDetectionConfig,
image_size: (usize, usize), // (width, height)
) -> Result<FaceDetectionOutput> {
use itertools::Itertools;
let factor = Vector2::new(image_size.0 as f32, image_size.1 as f32);
let (boxes, scores, landmarks): (Vec<_>, Vec<_>, Vec<_>) = processed
.bbox
.iter()
.cloned()
.zip(processed.confidence.iter().cloned())
.zip(processed.landmarks.iter().cloned())
.sorted_by_key(|((_, score), _)| ordered_float::OrderedFloat(*score))
.map(|((b, s), l)| (b, s, l))
.multiunzip();
let keep_indices =
nms(&boxes, &scores, config.threshold, config.nms_threshold).change_context(Error)?;
let bboxes = boxes
.into_iter()
.enumerate()
.filter(|(i, _)| keep_indices.contains(i))
.flat_map(|(_, x)| x.denormalize(factor).try_cast::<usize>())
.collect();
let confidence = scores
.into_iter()
.enumerate()
.filter(|(i, _)| keep_indices.contains(i))
.map(|(_, score)| score)
.collect();
let landmark = landmarks
.into_iter()
.enumerate()
.filter(|(i, _)| keep_indices.contains(i))
.map(|(_, score)| score)
.collect();
Ok(FaceDetectionOutput {
bbox: bboxes,
confidence,
landmark,
})
}
impl FaceDetectionBuilder {
pub fn new(model: impl AsRef<[u8]>) -> Result<Self> {
Ok(Self {
schedule_config: None,
backend_config: None,
model: mnn::Interpreter::from_bytes(model.as_ref())
.map_err(|e| e.into_inner())
.change_context(Error)
.attach_printable("Failed to load model from bytes")?,
})
}
/// Common trait for face detection backends
pub trait FaceDetector {
/// Run inference on the model and return raw outputs
fn run_model(&mut self, image: ndarray::ArrayView3<u8>) -> Result<FaceDetectionModelOutput>;
pub fn with_forward_type(mut self, forward_type: mnn::ForwardType) -> Self {
self.schedule_config
.get_or_insert_default()
.set_type(forward_type);
self
}
pub fn with_schedule_config(mut self, config: mnn::ScheduleConfig) -> Self {
self.schedule_config = Some(config);
self
}
pub fn with_backend_config(mut self, config: mnn::BackendConfig) -> Self {
self.backend_config = Some(config);
self
}
pub fn build(self) -> Result<FaceDetection> {
let model = self.model;
let sc = self.schedule_config.unwrap_or_default();
let handle = mnn_sync::SessionHandle::new(model, sc)
.change_context(Error)
.attach_printable("Failed to create session handle")?;
Ok(FaceDetection { handle })
}
}
impl FaceDetection {
pub fn builder<T: AsRef<[u8]>>()
-> fn(T) -> std::result::Result<FaceDetectionBuilder, Report<Error>> {
FaceDetectionBuilder::new
}
pub fn new(path: impl AsRef<Path>) -> Result<Self> {
let model = std::fs::read(path)
.change_context(Error)
.attach_printable("Failed to read model file")?;
Self::new_from_bytes(&model)
}
pub fn new_from_bytes(model: &[u8]) -> Result<Self> {
tracing::info!("Loading face detection model from bytes");
let mut model = mnn::Interpreter::from_bytes(model)
.map_err(|e| e.into_inner())
.change_context(Error)
.attach_printable("Failed to load model from bytes")?;
model.set_session_mode(mnn::SessionMode::Release);
model
.set_cache_file("retinaface.cache", 128)
.change_context(Error)
.attach_printable("Failed to set cache file")?;
let bc = mnn::BackendConfig::default().with_memory_mode(mnn::MemoryMode::High);
let sc = mnn::ScheduleConfig::new()
.with_type(mnn::ForwardType::Metal)
.with_backend_config(bc);
tracing::info!("Creating session handle for face detection model");
let handle = mnn_sync::SessionHandle::new(model, sc)
.change_context(Error)
.attach_printable("Failed to create session handle")?;
Ok(FaceDetection { handle })
}
pub fn detect_faces(
&self,
/// Detect faces with full pipeline including postprocessing
fn detect_faces(
&mut self,
image: ndarray::ArrayView3<u8>,
config: FaceDetectionConfig,
) -> Result<FaceDetectionOutput> {
let (height, width, _channels) = image.dim();
let output = self
.run_models(image)
.run_model(image)
.change_context(Error)
.attach_printable("Failed to detect faces")?;
// denormalize the bounding boxes
let factor = Vector2::new(width as f32, height as f32);
let mut processed = output
let processed = output
.postprocess(&config)
.attach_printable("Failed to postprocess")?;
use itertools::Itertools;
let (boxes, scores, landmarks): (Vec<_>, Vec<_>, Vec<_>) = processed
.bbox
.iter()
.cloned()
.zip(processed.confidence.iter().cloned())
.zip(processed.landmarks.iter().cloned())
.sorted_by_key(|((_, score), _)| ordered_float::OrderedFloat(*score))
.map(|((b, s), l)| (b, s, l))
.multiunzip();
let keep_indices =
nms(&boxes, &scores, config.threshold, config.nms_threshold).change_context(Error)?;
let bboxes = boxes
.into_iter()
.enumerate()
.filter(|(i, _)| keep_indices.contains(i))
.flat_map(|(_, x)| x.denormalize(factor).try_cast::<usize>())
.collect();
let confidence = scores
.into_iter()
.enumerate()
.filter(|(i, _)| keep_indices.contains(i))
.map(|(_, score)| score)
.collect();
let landmark = landmarks
.into_iter()
.enumerate()
.filter(|(i, _)| keep_indices.contains(i))
.map(|(_, score)| score)
.collect();
Ok(FaceDetectionOutput {
bbox: bboxes,
confidence,
landmark,
})
}
pub fn run_models(&self, image: ndarray::ArrayView3<u8>) -> Result<FaceDetectionModelOutput> {
#[rustfmt::skip]
let mut resized = image
.fast_resize(1024, 1024, None)
.change_context(Error)?
.mapv(|f| f as f32)
.tap_mut(|arr| {
arr.axis_iter_mut(ndarray::Axis(2))
.zip([104, 117, 123])
.for_each(|(mut array, pixel)| {
let pixel = pixel as f32;
array.map_inplace(|v| *v -= pixel);
});
})
.permuted_axes((2, 0, 1))
.insert_axis(ndarray::Axis(0))
.as_standard_layout()
.into_owned();
use ::tap::*;
let output = self
.handle
.run(move |sr| {
let tensor = resized
.as_mnn_tensor_mut()
.attach_printable("Failed to convert ndarray to mnn tensor")
.change_context(mnn::error::ErrorKind::TensorError)?;
tracing::trace!("Image Tensor shape: {:?}", tensor.shape());
let (intptr, session) = sr.both_mut();
tracing::trace!("Copying input tensor to host");
unsafe {
let mut input = intptr.input_unresized::<f32>(session, "input")?;
tracing::trace!("Input shape: {:?}", input.shape());
intptr.resize_tensor_by_nchw::<mnn::View<&mut f32>, _>(
input.view_mut(),
1,
3,
1024,
1024,
);
}
intptr.resize_session(session);
let mut input = intptr.input::<f32>(session, "input")?;
tracing::trace!("Input shape: {:?}", input.shape());
input.copy_from_host_tensor(tensor.view())?;
tracing::info!("Running face detection session");
intptr.run_session(&session)?;
let output_tensor = intptr
.output::<f32>(&session, "bbox")?
.create_host_tensor_from_device(true)
.as_ndarray()
.to_owned();
tracing::trace!("Output Bbox: \t\t{:?}", output_tensor.shape());
let output_confidence = intptr
.output::<f32>(&session, "confidence")?
.create_host_tensor_from_device(true)
.as_ndarray::<ndarray::Ix3>()
.to_owned();
tracing::trace!("Output Confidence: \t{:?}", output_confidence.shape());
let output_landmark = intptr
.output::<f32>(&session, "landmark")?
.create_host_tensor_from_device(true)
.as_ndarray::<ndarray::Ix3>()
.to_owned();
tracing::trace!("Output Landmark: \t{:?}", output_landmark.shape());
Ok(FaceDetectionModelOutput {
bbox: output_tensor,
confidence: output_confidence,
landmark: output_landmark,
})
})
.map_err(|e| e.into_inner())
.change_context(Error)?;
Ok(output)
apply_nms_and_finalize(processed, &config, (width, height))
}
}

View File

@@ -1 +1,20 @@
pub mod facenet;
use crate::errors::*;
use ndarray::{Array2, ArrayView4};
pub mod mnn;
pub mod ort;
/// Common trait for face embedding backends
pub trait FaceEmbedder {
/// Generate embeddings for a batch of face images
fn run_models(&self, faces: ArrayView4<u8>) -> Result<Array2<f32>>;
}
// Convenience type aliases for different backends
pub mod facenet {
pub use crate::faceembed::mnn::facenet as mnn;
pub use crate::faceembed::ort::facenet as ort;
}
// Default to MNN implementation for backward compatibility
pub use mnn::facenet::EmbeddingGenerator;

View File

@@ -1 +0,0 @@

View File

@@ -1,65 +0,0 @@
use crate::errors::{Result, *};
use ndarray::*;
use ort::*;
use std::path::Path;
#[derive(Debug)]
pub struct EmbeddingGenerator {
handle: ort::session::Session,
}
// impl EmbeddingGeneratorBuilder {
// pub fn new(model: impl AsRef<[u8]>) -> Result<Self> {
// Ok(Self {
// schedule_config: None,
// backend_config: None,
// model: mnn::Interpreter::from_bytes(model.as_ref())
// .map_err(|e| e.into_inner())
// .change_context(Error)
// .attach_printable("Failed to load model from bytes")?,
// })
// }
//
// pub fn with_forward_type(mut self, forward_type: mnn::ForwardType) -> Self {
// self.schedule_config
// .get_or_insert_default()
// .set_type(forward_type);
// self
// }
//
// pub fn with_schedule_config(mut self, config: mnn::ScheduleConfig) -> Self {
// self.schedule_config = Some(config);
// self
// }
//
// pub fn with_backend_config(mut self, config: mnn::BackendConfig) -> Self {
// self.backend_config = Some(config);
// self
// }
//
// pub fn build(self) -> Result<EmbeddingGenerator> {
// let model = self.model;
// let sc = self.schedule_config.unwrap_or_default();
// let handle = mnn_sync::SessionHandle::new(model, sc)
// .change_context(Error)
// .attach_printable("Failed to create session handle")?;
// Ok(EmbeddingGenerator { handle })
// }
// }
impl EmbeddingGenerator {
const INPUT_NAME: &'static str = "serving_default_input_6:0";
const OUTPUT_NAME: &'static str = "StatefulPartitionedCall:0";
pub fn new(path: impl AsRef<Path>) -> Result<Self> {
let model = std::fs::read(path)
.change_context(Error)
.attach_printable("Failed to read model file")?;
Self::new_from_bytes(&model)
}
pub fn new_from_bytes(model: impl AsRef<[u8]>) -> Result<Self> {
todo!()
}
// pub fn run_models(&self, face: ArrayView4<u8>) -> Result<Array2<f32>> {}
}

View File

@@ -1,9 +1,8 @@
use crate::errors::*;
use crate::faceembed::FaceEmbedder;
use mnn_bridge::ndarray::*;
use ndarray::{Array1, Array2, ArrayView3, ArrayView4};
use std::path::Path;
mod mnn_impl;
mod ort_impl;
#[derive(Debug)]
pub struct EmbeddingGenerator {
@@ -151,3 +150,9 @@ impl EmbeddingGenerator {
// todo!()
// }
}
impl FaceEmbedder for EmbeddingGenerator {
fn run_models(&self, faces: ArrayView4<u8>) -> Result<Array2<f32>> {
self.run_models(faces)
}
}

3
src/faceembed/mnn/mod.rs Normal file
View File

@@ -0,0 +1,3 @@
pub mod facenet;
pub use facenet::EmbeddingGenerator;

View File

@@ -0,0 +1,79 @@
use crate::errors::*;
use crate::faceembed::FaceEmbedder;
use error_stack::ResultExt;
use ndarray::{Array2, ArrayView4};
use std::path::Path;
#[derive(Debug)]
pub struct EmbeddingGenerator {
// Placeholder - ORT implementation to be completed later
_placeholder: (),
}
pub struct EmbeddingGeneratorBuilder {
_model_data: Vec<u8>,
}
impl EmbeddingGeneratorBuilder {
pub fn new(model: impl AsRef<[u8]>) -> crate::errors::Result<Self> {
Ok(Self {
_model_data: model.as_ref().to_vec(),
})
}
pub fn with_execution_providers(self, _providers: Vec<String>) -> Self {
self
}
pub fn with_intra_threads(self, _threads: usize) -> Self {
self
}
pub fn with_inter_threads(self, _threads: usize) -> Self {
self
}
pub fn build(self) -> crate::errors::Result<EmbeddingGenerator> {
// TODO: Implement ORT session creation
tracing::warn!("ORT FaceNet implementation is not yet complete");
Ok(EmbeddingGenerator { _placeholder: () })
}
}
impl EmbeddingGenerator {
const INPUT_NAME: &'static str = "serving_default_input_6:0";
const OUTPUT_NAME: &'static str = "StatefulPartitionedCall:0";
pub fn builder<T: AsRef<[u8]>>() -> fn(
T,
) -> std::result::Result<
EmbeddingGeneratorBuilder,
error_stack::Report<crate::errors::Error>,
> {
EmbeddingGeneratorBuilder::new
}
pub fn new(path: impl AsRef<Path>) -> crate::errors::Result<Self> {
let model = std::fs::read(path)
.change_context(Error)
.attach_printable("Failed to read model file")?;
Self::new_from_bytes(&model)
}
pub fn new_from_bytes(model: impl AsRef<[u8]>) -> crate::errors::Result<Self> {
tracing::info!("Loading face embedding model from bytes");
Self::builder()(model)?.build()
}
pub fn run_models(&self, _face: ArrayView4<u8>) -> crate::errors::Result<Array2<f32>> {
// TODO: Implement ORT inference
tracing::error!("ORT FaceNet inference not yet implemented");
Err(Error).attach_printable("ORT FaceNet implementation is incomplete")
}
}
impl FaceEmbedder for EmbeddingGenerator {
fn run_models(&self, faces: ArrayView4<u8>) -> crate::errors::Result<Array2<f32>> {
self.run_models(faces)
}
}

3
src/faceembed/ort/mod.rs Normal file
View File

@@ -0,0 +1,3 @@
pub mod facenet;
pub use facenet::EmbeddingGenerator;

View File

@@ -1,7 +1,7 @@
mod cli;
mod errors;
use bounding_box::roi::MultiRoi;
use detector::{facedet::retinaface::FaceDetectionConfig, faceembed};
use detector::{facedet, facedet::FaceDetectionConfig, faceembed};
use errors::*;
use fast_image_resize::ResizeOptions;
use ndarray::*;
@@ -20,97 +20,45 @@ pub fn main() -> Result<()> {
let args = <cli::Cli as clap::Parser>::parse();
match args.cmd {
cli::SubCommand::Detect(detect) => {
use detector::facedet;
let retinaface = facedet::retinaface::FaceDetection::builder()(RETINAFACE_MODEL)
.change_context(Error)?
.with_forward_type(detect.forward_type)
.build()
.change_context(errors::Error)
.attach_printable("Failed to create face detection model")?;
let facenet = faceembed::facenet::EmbeddingGenerator::builder()(FACENET_MODEL)
.change_context(Error)?
.with_forward_type(detect.forward_type)
.build()
.change_context(errors::Error)
.attach_printable("Failed to create face embedding model")?;
let image = image::open(detect.image).change_context(Error)?;
let image = image.into_rgb8();
let mut array = image
.into_ndarray()
.change_context(errors::Error)
.attach_printable("Failed to convert image to ndarray")?;
let output = retinaface
.detect_faces(
array.view(),
FaceDetectionConfig::default()
.with_threshold(detect.threshold)
.with_nms_threshold(detect.nms_threshold),
)
.change_context(errors::Error)
.attach_printable("Failed to detect faces")?;
for bbox in &output.bbox {
tracing::info!("Detected face: {:?}", bbox);
use bounding_box::draw::*;
array.draw(bbox, color::palette::css::GREEN_YELLOW.to_rgba8(), 1);
}
let face_rois = array
.view()
.multi_roi(&output.bbox)
.change_context(Error)?
.into_iter()
// .inspect(|f| {
// tracing::info!("Face ROI shape before resize: {:?}", f.dim());
// })
.map(|roi| {
roi.as_standard_layout()
.fast_resize(512, 512, &ResizeOptions::default())
.change_context(Error)
})
// .inspect(|f| {
// f.as_ref().inspect(|f| {
// tracing::info!("Face ROI shape after resize: {:?}", f.dim());
// });
// })
.collect::<Result<Vec<_>>>()?;
let face_roi_views = face_rois.iter().map(|roi| roi.view()).collect::<Vec<_>>();
// Choose backend based on executor type (defaulting to MNN for backward compatibility)
let executor = detect.executor.unwrap_or(cli::Executor::Mnn);
let chunk_size = CHUNK_SIZE;
let embeddings = face_roi_views
.chunks(chunk_size)
.map(|chunk| {
tracing::info!("Processing chunk of size: {}", chunk.len());
match executor {
cli::Executor::Mnn => {
let retinaface = facedet::mnn::FaceDetection::builder()(RETINAFACE_MODEL)
.change_context(Error)?
.with_forward_type(detect.forward_type)
.build()
.change_context(errors::Error)
.attach_printable("Failed to create face detection model")?;
let facenet = faceembed::mnn::EmbeddingGenerator::builder()(FACENET_MODEL)
.change_context(Error)?
.with_forward_type(detect.forward_type)
.build()
.change_context(errors::Error)
.attach_printable("Failed to create face embedding model")?;
if chunk.len() < 8 {
tracing::warn!("Chunk size is less than 8, padding with zeros");
let zeros = Array3::zeros((512, 512, 3));
let zero_array = core::iter::repeat(zeros.view())
.take(chunk_size)
.collect::<Vec<_>>();
let face_rois: Array4<u8> = ndarray::stack(Axis(0), zero_array.as_slice())
.change_context(errors::Error)
.attach_printable("Failed to stack rois together")?;
let output = facenet.run_models(face_rois.view()).change_context(Error)?;
Ok(output)
} else {
let face_rois: Array4<u8> = ndarray::stack(Axis(0), chunk)
.change_context(errors::Error)
.attach_printable("Failed to stack rois together")?;
let output = facenet.run_models(face_rois.view()).change_context(Error)?;
Ok(output)
}
})
.collect::<Result<Vec<Array2<f32>>>>();
run_detection(detect, retinaface, facenet)?;
}
cli::Executor::Onnx => {
// Load ONNX models
const RETINAFACE_ONNX_MODEL: &[u8] =
include_bytes!("../models/retinaface.onnx");
const FACENET_ONNX_MODEL: &[u8] = include_bytes!("../models/facenet.onnx");
let v = array.view();
if let Some(output) = detect.output {
let image: image::RgbImage = v
.to_image()
.change_context(errors::Error)
.attach_printable("Failed to convert ndarray to image")?;
image
.save(output)
.change_context(errors::Error)
.attach_printable("Failed to save output image")?;
let retinaface = facedet::ort::FaceDetection::builder()(RETINAFACE_ONNX_MODEL)
.change_context(Error)?
.build()
.change_context(errors::Error)
.attach_printable("Failed to create face detection model")?;
let facenet = faceembed::ort::EmbeddingGenerator::builder()(FACENET_ONNX_MODEL)
.change_context(Error)?
.build()
.change_context(errors::Error)
.attach_printable("Failed to create face embedding model")?;
run_detection(detect, retinaface, facenet)?;
}
}
}
cli::SubCommand::List(list) => {
@@ -122,3 +70,91 @@ pub fn main() -> Result<()> {
}
Ok(())
}
fn run_detection<D, E>(detect: cli::Detect, mut retinaface: D, facenet: E) -> Result<()>
where
D: facedet::FaceDetector,
E: faceembed::FaceEmbedder,
{
let image = image::open(detect.image).change_context(Error)?;
let image = image.into_rgb8();
let mut array = image
.into_ndarray()
.change_context(errors::Error)
.attach_printable("Failed to convert image to ndarray")?;
let output = retinaface
.detect_faces(
array.view(),
FaceDetectionConfig::default()
.with_threshold(detect.threshold)
.with_nms_threshold(detect.nms_threshold),
)
.change_context(errors::Error)
.attach_printable("Failed to detect faces")?;
for bbox in &output.bbox {
tracing::info!("Detected face: {:?}", bbox);
use bounding_box::draw::*;
array.draw(bbox, color::palette::css::GREEN_YELLOW.to_rgba8(), 1);
}
let face_rois = array
.view()
.multi_roi(&output.bbox)
.change_context(Error)?
.into_iter()
// .inspect(|f| {
// tracing::info!("Face ROI shape before resize: {:?}", f.dim());
// })
.map(|roi| {
roi.as_standard_layout()
.fast_resize(512, 512, &ResizeOptions::default())
.change_context(Error)
})
// .inspect(|f| {
// f.as_ref().inspect(|f| {
// tracing::info!("Face ROI shape after resize: {:?}", f.dim());
// });
// })
.collect::<Result<Vec<_>>>()?;
let face_roi_views = face_rois.iter().map(|roi| roi.view()).collect::<Vec<_>>();
let chunk_size = CHUNK_SIZE;
let embeddings = face_roi_views
.chunks(chunk_size)
.map(|chunk| {
tracing::info!("Processing chunk of size: {}", chunk.len());
if chunk.len() < 8 {
tracing::warn!("Chunk size is less than 8, padding with zeros");
let zeros = Array3::zeros((512, 512, 3));
let zero_array = core::iter::repeat(zeros.view())
.take(chunk_size)
.collect::<Vec<_>>();
let face_rois: Array4<u8> = ndarray::stack(Axis(0), zero_array.as_slice())
.change_context(errors::Error)
.attach_printable("Failed to stack rois together")?;
let output = facenet.run_models(face_rois.view()).change_context(Error)?;
Ok(output)
} else {
let face_rois: Array4<u8> = ndarray::stack(Axis(0), chunk)
.change_context(errors::Error)
.attach_printable("Failed to stack rois together")?;
let output = facenet.run_models(face_rois.view()).change_context(Error)?;
Ok(output)
}
})
.collect::<Result<Vec<Array2<f32>>>>();
let v = array.view();
if let Some(output) = detect.output {
let image: image::RgbImage = v
.to_image()
.change_context(errors::Error)
.attach_printable("Failed to convert ndarray to image")?;
image
.save(output)
.change_context(errors::Error)
.attach_printable("Failed to save output image")?;
}
Ok(())
}