feat(gui): Added iced gui

This commit is contained in:
uttarayan21
2025-08-21 18:28:39 +05:30
parent bfa389b497
commit 3e14a16739
16 changed files with 5194 additions and 58 deletions

891
src/gui/app.rs Normal file
View File

@@ -0,0 +1,891 @@
use iced::{
Alignment, Element, Length, Task, Theme,
widget::{
Space, button, column, container, image, pick_list, progress_bar, row, scrollable, slider,
text,
},
};
use rfd::FileDialog;
use std::path::PathBuf;
use std::sync::Arc;
use crate::gui::bridge::FaceDetectionBridge;
#[derive(Debug, Clone)]
pub enum Message {
// File operations
OpenImageDialog,
ImageSelected(Option<PathBuf>),
OpenSecondImageDialog,
SecondImageSelected(Option<PathBuf>),
SaveOutputDialog,
OutputPathSelected(Option<PathBuf>),
// Detection parameters
ThresholdChanged(f32),
NmsThresholdChanged(f32),
ExecutorChanged(ExecutorType),
// Actions
DetectFaces,
CompareFaces,
ClearResults,
// Results
DetectionComplete(DetectionResult),
ComparisonComplete(ComparisonResult),
// UI state
TabChanged(Tab),
ProgressUpdate(f32),
// Image loading
ImageLoaded(Option<Arc<Vec<u8>>>),
SecondImageLoaded(Option<Arc<Vec<u8>>>),
ProcessedImageUpdated(Option<Vec<u8>>),
}
#[derive(Debug, Clone, PartialEq)]
pub enum Tab {
Detection,
Comparison,
Settings,
}
#[derive(Debug, Clone, PartialEq)]
pub enum ExecutorType {
MnnCpu,
MnnMetal,
MnnCoreML,
OnnxCpu,
}
#[derive(Debug, Clone)]
pub enum DetectionResult {
Success {
image_path: PathBuf,
faces_count: usize,
processed_image: Option<Vec<u8>>,
processing_time: f64,
},
Error(String),
}
#[derive(Debug, Clone)]
pub enum ComparisonResult {
Success {
image1_faces: usize,
image2_faces: usize,
best_similarity: f32,
processing_time: f64,
},
Error(String),
}
#[derive(Debug)]
pub struct FaceDetectorApp {
// Current tab
current_tab: Tab,
// File paths
input_image: Option<PathBuf>,
second_image: Option<PathBuf>,
output_path: Option<PathBuf>,
// Detection parameters
threshold: f32,
nms_threshold: f32,
executor_type: ExecutorType,
// UI state
is_processing: bool,
progress: f32,
status_message: String,
// Results
detection_result: Option<DetectionResult>,
comparison_result: Option<ComparisonResult>,
// Image data for display
current_image_handle: Option<image::Handle>,
processed_image_handle: Option<image::Handle>,
second_image_handle: Option<image::Handle>,
}
impl Default for FaceDetectorApp {
fn default() -> Self {
Self {
current_tab: Tab::Detection,
input_image: None,
second_image: None,
output_path: None,
threshold: 0.8,
nms_threshold: 0.3,
executor_type: ExecutorType::MnnCpu,
is_processing: false,
progress: 0.0,
status_message: "Ready".to_string(),
detection_result: None,
comparison_result: None,
current_image_handle: None,
processed_image_handle: None,
second_image_handle: None,
}
}
}
impl FaceDetectorApp {
fn new() -> (Self, Task<Message>) {
(Self::default(), Task::none())
}
fn title(&self) -> String {
"Face Detector - Rust GUI".to_string()
}
fn update(&mut self, message: Message) -> Task<Message> {
match message {
Message::TabChanged(tab) => {
self.current_tab = tab;
Task::none()
}
Message::OpenImageDialog => {
self.status_message = "Opening file dialog...".to_string();
Task::perform(
async {
FileDialog::new()
.add_filter("Images", &["jpg", "jpeg", "png", "bmp", "tiff", "webp"])
.pick_file()
},
Message::ImageSelected,
)
}
Message::ImageSelected(path) => {
if let Some(path) = path {
self.input_image = Some(path.clone());
self.status_message = format!("Selected: {}", path.display());
// Load image data for display
Task::perform(
async move {
match std::fs::read(&path) {
Ok(data) => Some(Arc::new(data)),
Err(_) => None,
}
},
Message::ImageLoaded,
)
} else {
self.status_message = "No file selected".to_string();
Task::none()
}
}
Message::OpenSecondImageDialog => Task::perform(
async {
FileDialog::new()
.add_filter("Images", &["jpg", "jpeg", "png", "bmp", "tiff", "webp"])
.pick_file()
},
Message::SecondImageSelected,
),
Message::SecondImageSelected(path) => {
if let Some(path) = path {
self.second_image = Some(path.clone());
self.status_message = format!("Second image selected: {}", path.display());
// Load second image data for display
Task::perform(
async move {
match std::fs::read(&path) {
Ok(data) => Some(Arc::new(data)),
Err(_) => None,
}
},
Message::SecondImageLoaded,
)
} else {
self.status_message = "No second image selected".to_string();
Task::none()
}
}
Message::SaveOutputDialog => Task::perform(
async {
FileDialog::new()
.add_filter("Images", &["jpg", "jpeg", "png"])
.save_file()
},
Message::OutputPathSelected,
),
Message::OutputPathSelected(path) => {
if let Some(path) = path {
self.output_path = Some(path.clone());
self.status_message = format!("Output will be saved to: {}", path.display());
} else {
self.status_message = "No output path selected".to_string();
}
Task::none()
}
Message::ThresholdChanged(value) => {
self.threshold = value;
Task::none()
}
Message::NmsThresholdChanged(value) => {
self.nms_threshold = value;
Task::none()
}
Message::ExecutorChanged(executor_type) => {
self.executor_type = executor_type;
Task::none()
}
Message::DetectFaces => {
if let Some(input_path) = &self.input_image {
self.is_processing = true;
self.progress = 0.0;
self.status_message = "Detecting faces...".to_string();
let input_path = input_path.clone();
let output_path = self.output_path.clone();
let threshold = self.threshold;
let nms_threshold = self.nms_threshold;
let executor_type = self.executor_type.clone();
Task::perform(
async move {
FaceDetectionBridge::detect_faces(
input_path,
output_path,
threshold,
nms_threshold,
executor_type,
)
.await
},
Message::DetectionComplete,
)
} else {
self.status_message = "Please select an image first".to_string();
Task::none()
}
}
Message::CompareFaces => {
if let (Some(image1), Some(image2)) = (&self.input_image, &self.second_image) {
self.is_processing = true;
self.progress = 0.0;
self.status_message = "Comparing faces...".to_string();
let image1 = image1.clone();
let image2 = image2.clone();
let threshold = self.threshold;
let nms_threshold = self.nms_threshold;
let executor_type = self.executor_type.clone();
Task::perform(
async move {
FaceDetectionBridge::compare_faces(
image1,
image2,
threshold,
nms_threshold,
executor_type,
)
.await
},
Message::ComparisonComplete,
)
} else {
self.status_message = "Please select both images for comparison".to_string();
Task::none()
}
}
Message::ClearResults => {
self.detection_result = None;
self.comparison_result = None;
self.processed_image_handle = None;
self.status_message = "Results cleared".to_string();
Task::none()
}
Message::DetectionComplete(result) => {
self.is_processing = false;
self.progress = 100.0;
match &result {
DetectionResult::Success {
faces_count,
processing_time,
processed_image,
..
} => {
self.status_message = format!(
"Detection complete! Found {} faces in {:.2}s",
faces_count, processing_time
);
// Update processed image if available
if let Some(image_data) = processed_image {
self.processed_image_handle =
Some(image::Handle::from_bytes(image_data.clone()));
}
}
DetectionResult::Error(error) => {
self.status_message = format!("Detection failed: {}", error);
}
}
self.detection_result = Some(result);
Task::none()
}
Message::ComparisonComplete(result) => {
self.is_processing = false;
self.progress = 100.0;
match &result {
ComparisonResult::Success {
best_similarity,
processing_time,
..
} => {
let interpretation = if *best_similarity > 0.8 {
"Very likely the same person"
} else if *best_similarity > 0.6 {
"Possibly the same person"
} else if *best_similarity > 0.4 {
"Unlikely to be the same person"
} else {
"Very unlikely to be the same person"
};
self.status_message = format!(
"Comparison complete! Similarity: {:.3} - {} (Processing time: {:.2}s)",
best_similarity, interpretation, processing_time
);
}
ComparisonResult::Error(error) => {
self.status_message = format!("Comparison failed: {}", error);
}
}
self.comparison_result = Some(result);
Task::none()
}
Message::ProgressUpdate(progress) => {
self.progress = progress;
Task::none()
}
Message::ImageLoaded(data) => {
if let Some(image_data) = data {
self.current_image_handle =
Some(image::Handle::from_bytes(image_data.as_ref().clone()));
self.status_message = "Image loaded successfully".to_string();
} else {
self.status_message = "Failed to load image".to_string();
}
Task::none()
}
Message::SecondImageLoaded(data) => {
if let Some(image_data) = data {
self.second_image_handle =
Some(image::Handle::from_bytes(image_data.as_ref().clone()));
self.status_message = "Second image loaded successfully".to_string();
} else {
self.status_message = "Failed to load second image".to_string();
}
Task::none()
}
Message::ProcessedImageUpdated(data) => {
if let Some(image_data) = data {
self.processed_image_handle = Some(image::Handle::from_bytes(image_data));
}
Task::none()
}
}
}
fn view(&self) -> Element<Message> {
let tabs = row![
button("Detection")
.on_press(Message::TabChanged(Tab::Detection))
.style(if self.current_tab == Tab::Detection {
button::primary
} else {
button::secondary
}),
button("Comparison")
.on_press(Message::TabChanged(Tab::Comparison))
.style(if self.current_tab == Tab::Comparison {
button::primary
} else {
button::secondary
}),
button("Settings")
.on_press(Message::TabChanged(Tab::Settings))
.style(if self.current_tab == Tab::Settings {
button::primary
} else {
button::secondary
}),
]
.spacing(10)
.padding(10);
let content = match self.current_tab {
Tab::Detection => self.detection_view(),
Tab::Comparison => self.comparison_view(),
Tab::Settings => self.settings_view(),
};
let status_bar = container(
row![
text(&self.status_message),
Space::with_width(Length::Fill),
if self.is_processing {
Element::from(progress_bar(0.0..=100.0, self.progress))
} else {
Space::with_width(Length::Shrink).into()
}
]
.align_y(Alignment::Center)
.spacing(10),
)
.padding(10)
.style(container::bordered_box);
column![tabs, content, status_bar].into()
}
}
impl FaceDetectorApp {
fn detection_view(&self) -> Element<Message> {
let file_section = column![
text("Input Image").size(18),
row![
button("Select Image").on_press(Message::OpenImageDialog),
text(
self.input_image
.as_ref()
.map(|p| p
.file_name()
.unwrap_or_default()
.to_string_lossy()
.to_string())
.unwrap_or_else(|| "No image selected".to_string())
),
]
.spacing(10)
.align_y(Alignment::Center),
row![
button("Output Path").on_press(Message::SaveOutputDialog),
text(
self.output_path
.as_ref()
.map(|p| p
.file_name()
.unwrap_or_default()
.to_string_lossy()
.to_string())
.unwrap_or_else(|| "Auto-generate".to_string())
),
]
.spacing(10)
.align_y(Alignment::Center),
]
.spacing(10);
// Image display section
let image_section = if let Some(ref handle) = self.current_image_handle {
let original_image = column![
text("Original Image").size(16),
container(
image(handle.clone())
.width(400)
.height(300)
.content_fit(iced::ContentFit::ScaleDown)
)
.style(container::bordered_box)
.padding(5),
]
.spacing(5)
.align_x(Alignment::Center);
let processed_section = if let Some(ref processed_handle) = self.processed_image_handle
{
column![
text("Detected Faces").size(16),
container(
image(processed_handle.clone())
.width(400)
.height(300)
.content_fit(iced::ContentFit::ScaleDown)
)
.style(container::bordered_box)
.padding(5),
]
.spacing(5)
.align_x(Alignment::Center)
} else {
column![
text("Detected Faces").size(16),
container(
text("Process image to see results").style(|_theme| text::Style {
color: Some(iced::Color::from_rgb(0.6, 0.6, 0.6)),
})
)
.width(400)
.height(300)
.style(container::bordered_box)
.padding(5)
.center_x(Length::Fill)
.center_y(Length::Fill),
]
.spacing(5)
.align_x(Alignment::Center)
};
row![original_image, processed_section]
.spacing(20)
.align_y(Alignment::Start)
} else {
row![
container(
text("Select an image to display").style(|_theme| text::Style {
color: Some(iced::Color::from_rgb(0.6, 0.6, 0.6)),
})
)
.width(400)
.height(300)
.style(container::bordered_box)
.padding(5)
.center_x(Length::Fill)
.center_y(Length::Fill)
]
};
let controls = column![
text("Detection Parameters").size(18),
row![
text("Threshold:"),
slider(0.1..=1.0, self.threshold, Message::ThresholdChanged),
text(format!("{:.2}", self.threshold)),
]
.spacing(10)
.align_y(Alignment::Center),
row![
text("NMS Threshold:"),
slider(0.1..=1.0, self.nms_threshold, Message::NmsThresholdChanged),
text(format!("{:.2}", self.nms_threshold)),
]
.spacing(10)
.align_y(Alignment::Center),
row![
button("Detect Faces")
.on_press(Message::DetectFaces)
.style(button::primary),
button("Clear Results").on_press(Message::ClearResults),
]
.spacing(10),
]
.spacing(10);
let results = if let Some(result) = &self.detection_result {
match result {
DetectionResult::Success {
faces_count,
processing_time,
..
} => column![
text("Detection Results").size(18),
text(format!("Faces detected: {}", faces_count)),
text(format!("Processing time: {:.2}s", processing_time)),
]
.spacing(5),
DetectionResult::Error(error) => column![
text("Detection Results").size(18),
text(format!("Error: {}", error)).style(text::danger),
]
.spacing(5),
}
} else {
column![text("No results yet").style(|_theme| text::Style {
color: Some(iced::Color::from_rgb(0.6, 0.6, 0.6)),
})]
};
column![file_section, image_section, controls, results]
.spacing(20)
.padding(20)
.into()
}
fn comparison_view(&self) -> Element<Message> {
let file_section = column![
text("Image Comparison").size(18),
row![
button("Select First Image").on_press(Message::OpenImageDialog),
text(
self.input_image
.as_ref()
.map(|p| p
.file_name()
.unwrap_or_default()
.to_string_lossy()
.to_string())
.unwrap_or_else(|| "No image selected".to_string())
),
]
.spacing(10)
.align_y(Alignment::Center),
row![
button("Select Second Image").on_press(Message::OpenSecondImageDialog),
text(
self.second_image
.as_ref()
.map(|p| p
.file_name()
.unwrap_or_default()
.to_string_lossy()
.to_string())
.unwrap_or_else(|| "No image selected".to_string())
),
]
.spacing(10)
.align_y(Alignment::Center),
]
.spacing(10);
// Image comparison display section
let comparison_image_section = {
let first_image = if let Some(ref handle) = self.current_image_handle {
column![
text("First Image").size(16),
container(
image(handle.clone())
.width(350)
.height(250)
.content_fit(iced::ContentFit::ScaleDown)
)
.style(container::bordered_box)
.padding(5),
]
.spacing(5)
.align_x(Alignment::Center)
} else {
column![
text("First Image").size(16),
container(text("Select first image").style(|_theme| text::Style {
color: Some(iced::Color::from_rgb(0.6, 0.6, 0.6)),
}))
.width(350)
.height(250)
.style(container::bordered_box)
.padding(5)
.center_x(Length::Fill)
.center_y(Length::Fill),
]
.spacing(5)
.align_x(Alignment::Center)
};
let second_image = if let Some(ref handle) = self.second_image_handle {
column![
text("Second Image").size(16),
container(
image(handle.clone())
.width(350)
.height(250)
.content_fit(iced::ContentFit::ScaleDown)
)
.style(container::bordered_box)
.padding(5),
]
.spacing(5)
.align_x(Alignment::Center)
} else {
column![
text("Second Image").size(16),
container(text("Select second image").style(|_theme| text::Style {
color: Some(iced::Color::from_rgb(0.6, 0.6, 0.6)),
}))
.width(350)
.height(250)
.style(container::bordered_box)
.padding(5)
.center_x(Length::Fill)
.center_y(Length::Fill),
]
.spacing(5)
.align_x(Alignment::Center)
};
row![first_image, second_image]
.spacing(20)
.align_y(Alignment::Start)
};
let controls = column![
text("Comparison Parameters").size(18),
row![
text("Threshold:"),
slider(0.1..=1.0, self.threshold, Message::ThresholdChanged),
text(format!("{:.2}", self.threshold)),
]
.spacing(10)
.align_y(Alignment::Center),
row![
text("NMS Threshold:"),
slider(0.1..=1.0, self.nms_threshold, Message::NmsThresholdChanged),
text(format!("{:.2}", self.nms_threshold)),
]
.spacing(10)
.align_y(Alignment::Center),
button("Compare Faces")
.on_press(Message::CompareFaces)
.style(button::primary),
]
.spacing(10);
let results = if let Some(result) = &self.comparison_result {
match result {
ComparisonResult::Success {
image1_faces,
image2_faces,
best_similarity,
processing_time,
} => {
let interpretation = if *best_similarity > 0.8 {
(
"Very likely the same person",
iced::Color::from_rgb(0.2, 0.8, 0.2),
)
} else if *best_similarity > 0.6 {
(
"Possibly the same person",
iced::Color::from_rgb(0.8, 0.8, 0.2),
)
} else if *best_similarity > 0.4 {
(
"Unlikely to be the same person",
iced::Color::from_rgb(0.8, 0.6, 0.2),
)
} else {
(
"Very unlikely to be the same person",
iced::Color::from_rgb(0.8, 0.2, 0.2),
)
};
column![
text("Comparison Results").size(18),
text(format!("First image faces: {}", image1_faces)),
text(format!("Second image faces: {}", image2_faces)),
text(format!("Best similarity: {:.3}", best_similarity)),
text(interpretation.0).style(move |_theme| text::Style {
color: Some(interpretation.1),
}),
text(format!("Processing time: {:.2}s", processing_time)),
]
.spacing(5)
}
ComparisonResult::Error(error) => column![
text("Comparison Results").size(18),
text(format!("Error: {}", error)).style(text::danger),
]
.spacing(5),
}
} else {
column![
text("No comparison results yet").style(|_theme| text::Style {
color: Some(iced::Color::from_rgb(0.6, 0.6, 0.6)),
})
]
};
column![file_section, comparison_image_section, controls, results]
.spacing(20)
.padding(20)
.into()
}
fn settings_view(&self) -> Element<Message> {
let executor_options = vec![
ExecutorType::MnnCpu,
ExecutorType::MnnMetal,
ExecutorType::MnnCoreML,
ExecutorType::OnnxCpu,
];
container(
column![
text("Model Settings").size(18),
row![
text("Execution Backend:"),
pick_list(
executor_options,
Some(self.executor_type.clone()),
Message::ExecutorChanged,
),
]
.spacing(10)
.align_y(Alignment::Center),
text("Detection Thresholds").size(18),
row![
text("Detection Threshold:"),
slider(0.1..=1.0, self.threshold, Message::ThresholdChanged),
text(format!("{:.2}", self.threshold)),
]
.spacing(10)
.align_y(Alignment::Center),
row![
text("NMS Threshold:"),
slider(0.1..=1.0, self.nms_threshold, Message::NmsThresholdChanged),
text(format!("{:.2}", self.nms_threshold)),
]
.spacing(10)
.align_y(Alignment::Center),
text("About").size(18),
text("Face Detection and Embedding - Rust GUI"),
text("Built with iced.rs and your face detection engine"),
]
.spacing(15)
.padding(20),
)
.height(Length::Shrink)
.into()
}
}
impl std::fmt::Display for ExecutorType {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
ExecutorType::MnnCpu => write!(f, "MNN (CPU)"),
ExecutorType::MnnMetal => write!(f, "MNN (Metal)"),
ExecutorType::MnnCoreML => write!(f, "MNN (CoreML)"),
ExecutorType::OnnxCpu => write!(f, "ONNX (CPU)"),
}
}
}
pub fn run() -> iced::Result {
iced::application(
"Face Detector",
FaceDetectorApp::update,
FaceDetectorApp::view,
)
.run_with(FaceDetectorApp::new)
}

368
src/gui/bridge.rs Normal file
View File

@@ -0,0 +1,368 @@
use std::path::PathBuf;
use crate::facedet::{FaceDetectionConfig, FaceDetector, retinaface};
use crate::faceembed::facenet;
use crate::gui::app::{ComparisonResult, DetectionResult, ExecutorType};
use ndarray_image::ImageToNdarray;
const RETINAFACE_MODEL_MNN: &[u8] = include_bytes!("../../models/retinaface.mnn");
const FACENET_MODEL_MNN: &[u8] = include_bytes!("../../models/facenet.mnn");
const RETINAFACE_MODEL_ONNX: &[u8] = include_bytes!("../../models/retinaface.onnx");
const FACENET_MODEL_ONNX: &[u8] = include_bytes!("../../models/facenet.onnx");
pub struct FaceDetectionBridge;
impl FaceDetectionBridge {
pub async fn detect_faces(
image_path: PathBuf,
output_path: Option<PathBuf>,
threshold: f32,
nms_threshold: f32,
executor_type: ExecutorType,
) -> DetectionResult {
let start_time = std::time::Instant::now();
match Self::run_detection_internal(
image_path.clone(),
output_path,
threshold,
nms_threshold,
executor_type,
)
.await
{
Ok((faces_count, processed_image)) => {
let processing_time = start_time.elapsed().as_secs_f64();
DetectionResult::Success {
image_path,
faces_count,
processed_image,
processing_time,
}
}
Err(error) => DetectionResult::Error(error.to_string()),
}
}
pub async fn compare_faces(
image1_path: PathBuf,
image2_path: PathBuf,
threshold: f32,
nms_threshold: f32,
executor_type: ExecutorType,
) -> ComparisonResult {
let start_time = std::time::Instant::now();
match Self::run_comparison_internal(
image1_path,
image2_path,
threshold,
nms_threshold,
executor_type,
)
.await
{
Ok((image1_faces, image2_faces, best_similarity)) => {
let processing_time = start_time.elapsed().as_secs_f64();
ComparisonResult::Success {
image1_faces,
image2_faces,
best_similarity,
processing_time,
}
}
Err(error) => ComparisonResult::Error(error.to_string()),
}
}
async fn run_detection_internal(
image_path: PathBuf,
output_path: Option<PathBuf>,
threshold: f32,
nms_threshold: f32,
executor_type: ExecutorType,
) -> Result<(usize, Option<Vec<u8>>), Box<dyn std::error::Error + Send + Sync>> {
// Load the image
let img = image::open(&image_path)?;
let img_rgb = img.to_rgb8();
let (width, height) = img_rgb.dimensions();
// Convert to ndarray format
let image_array = img_rgb.as_ndarray()?;
// Create detection configuration
let config = FaceDetectionConfig::default()
.with_threshold(threshold)
.with_nms_threshold(nms_threshold)
.with_input_width(width as usize)
.with_input_height(height as usize);
// Create detector and detect faces
let faces = match executor_type {
ExecutorType::MnnCpu | ExecutorType::MnnMetal | ExecutorType::MnnCoreML => {
let forward_type = match executor_type {
ExecutorType::MnnCpu => mnn::ForwardType::CPU,
ExecutorType::MnnMetal => mnn::ForwardType::Metal,
ExecutorType::MnnCoreML => mnn::ForwardType::CoreML,
_ => unreachable!(),
};
let mut detector = retinaface::mnn::FaceDetection::builder(RETINAFACE_MODEL_MNN)
.map_err(|e| format!("Failed to create MNN detector: {}", e))?
.with_forward_type(forward_type)
.build()
.map_err(|e| format!("Failed to build MNN detector: {}", e))?;
detector
.detect_faces(image_array.view(), &config)
.map_err(|e| format!("Detection failed: {}", e))?
}
ExecutorType::OnnxCpu => {
let mut detector = retinaface::ort::FaceDetection::builder(RETINAFACE_MODEL_ONNX)
.map_err(|e| format!("Failed to create ONNX detector: {}", e))?
.build()
.map_err(|e| format!("Failed to build ONNX detector: {}", e))?;
detector
.detect_faces(image_array.view(), &config)
.map_err(|e| format!("Detection failed: {}", e))?
}
};
let faces_count = faces.bbox.len();
// Generate output image with bounding boxes if requested
let processed_image = if output_path.is_some() || true {
// Always generate for GUI display
let mut output_img = img.to_rgb8();
for bbox in &faces.bbox {
let min_point = bbox.min_vertex();
let size = bbox.size();
let rect = imageproc::rect::Rect::at(min_point.x as i32, min_point.y as i32)
.of_size(size.x as u32, size.y as u32);
imageproc::drawing::draw_hollow_rect_mut(
&mut output_img,
rect,
image::Rgb([255, 0, 0]),
);
}
// Convert to bytes for GUI display
let mut buffer = Vec::new();
let mut cursor = std::io::Cursor::new(&mut buffer);
image::DynamicImage::ImageRgb8(output_img.clone())
.write_to(&mut cursor, image::ImageFormat::Png)?;
// Save to file if output path is specified
if let Some(ref output_path) = output_path {
output_img.save(output_path)?;
}
Some(buffer)
} else {
None
};
Ok((faces_count, processed_image))
}
async fn run_comparison_internal(
image1_path: PathBuf,
image2_path: PathBuf,
threshold: f32,
nms_threshold: f32,
executor_type: ExecutorType,
) -> Result<(usize, usize, f32), Box<dyn std::error::Error + Send + Sync>> {
// Load both images
let img1 = image::open(&image1_path)?.to_rgb8();
let img2 = image::open(&image2_path)?.to_rgb8();
// Convert to ndarray format
let image1_array = img1.as_ndarray()?;
let image2_array = img2.as_ndarray()?;
// Create detection configuration
let config1 = FaceDetectionConfig::default()
.with_threshold(threshold)
.with_nms_threshold(nms_threshold)
.with_input_width(img1.width() as usize)
.with_input_height(img1.height() as usize);
let config2 = FaceDetectionConfig::default()
.with_threshold(threshold)
.with_nms_threshold(nms_threshold)
.with_input_width(img2.width() as usize)
.with_input_height(img2.height() as usize);
// Create detector and embedder, detect faces and generate embeddings
let (faces1, faces2, best_similarity) = match executor_type {
ExecutorType::MnnCpu | ExecutorType::MnnMetal | ExecutorType::MnnCoreML => {
let forward_type = match executor_type {
ExecutorType::MnnCpu => mnn::ForwardType::CPU,
ExecutorType::MnnMetal => mnn::ForwardType::Metal,
ExecutorType::MnnCoreML => mnn::ForwardType::CoreML,
_ => unreachable!(),
};
let mut detector = retinaface::mnn::FaceDetection::builder(RETINAFACE_MODEL_MNN)
.map_err(|e| format!("Failed to create MNN detector: {}", e))?
.with_forward_type(forward_type.clone())
.build()
.map_err(|e| format!("Failed to build MNN detector: {}", e))?;
let embedder = facenet::mnn::EmbeddingGenerator::builder(FACENET_MODEL_MNN)
.map_err(|e| format!("Failed to create MNN embedder: {}", e))?
.with_forward_type(forward_type)
.build()
.map_err(|e| format!("Failed to build MNN embedder: {}", e))?;
// Detect faces in both images
let faces1 = detector
.detect_faces(image1_array.view(), &config1)
.map_err(|e| format!("Detection failed for image 1: {}", e))?;
let faces2 = detector
.detect_faces(image2_array.view(), &config2)
.map_err(|e| format!("Detection failed for image 2: {}", e))?;
// Extract face crops and generate embeddings
let mut best_similarity = 0.0f32;
for bbox1 in &faces1.bbox {
let crop1 = Self::crop_face_from_image(&img1, bbox1)?;
let crop1_array = ndarray::Array::from_shape_vec(
(1, crop1.height() as usize, crop1.width() as usize, 3),
crop1
.pixels()
.flat_map(|p| [p.0[0], p.0[1], p.0[2]])
.collect(),
)?;
let embedding1 = embedder
.run_models(crop1_array.view())
.map_err(|e| format!("Embedding generation failed: {}", e))?;
for bbox2 in &faces2.bbox {
let crop2 = Self::crop_face_from_image(&img2, bbox2)?;
let crop2_array = ndarray::Array::from_shape_vec(
(1, crop2.height() as usize, crop2.width() as usize, 3),
crop2
.pixels()
.flat_map(|p| [p.0[0], p.0[1], p.0[2]])
.collect(),
)?;
let embedding2 = embedder
.run_models(crop2_array.view())
.map_err(|e| format!("Embedding generation failed: {}", e))?;
let similarity = Self::cosine_similarity(
embedding1.row(0).as_slice().unwrap(),
embedding2.row(0).as_slice().unwrap(),
);
best_similarity = best_similarity.max(similarity);
}
}
(faces1, faces2, best_similarity)
}
ExecutorType::OnnxCpu => {
let mut detector = retinaface::ort::FaceDetection::builder(RETINAFACE_MODEL_ONNX)
.map_err(|e| format!("Failed to create ONNX detector: {}", e))?
.build()
.map_err(|e| format!("Failed to build ONNX detector: {}", e))?;
let mut embedder = facenet::ort::EmbeddingGenerator::builder(FACENET_MODEL_ONNX)
.map_err(|e| format!("Failed to create ONNX embedder: {}", e))?
.build()
.map_err(|e| format!("Failed to build ONNX embedder: {}", e))?;
// Detect faces in both images
let faces1 = detector
.detect_faces(image1_array.view(), &config1)
.map_err(|e| format!("Detection failed for image 1: {}", e))?;
let faces2 = detector
.detect_faces(image2_array.view(), &config2)
.map_err(|e| format!("Detection failed for image 2: {}", e))?;
// Extract face crops and generate embeddings
let mut best_similarity = 0.0f32;
for bbox1 in &faces1.bbox {
let crop1 = Self::crop_face_from_image(&img1, bbox1)?;
let crop1_array = ndarray::Array::from_shape_vec(
(1, crop1.height() as usize, crop1.width() as usize, 3),
crop1
.pixels()
.flat_map(|p| [p.0[0], p.0[1], p.0[2]])
.collect(),
)?;
let embedding1 = embedder
.run_models(crop1_array.view())
.map_err(|e| format!("Embedding generation failed: {}", e))?;
for bbox2 in &faces2.bbox {
let crop2 = Self::crop_face_from_image(&img2, bbox2)?;
let crop2_array = ndarray::Array::from_shape_vec(
(1, crop2.height() as usize, crop2.width() as usize, 3),
crop2
.pixels()
.flat_map(|p| [p.0[0], p.0[1], p.0[2]])
.collect(),
)?;
let embedding2 = embedder
.run_models(crop2_array.view())
.map_err(|e| format!("Embedding generation failed: {}", e))?;
let similarity = Self::cosine_similarity(
embedding1.row(0).as_slice().unwrap(),
embedding2.row(0).as_slice().unwrap(),
);
best_similarity = best_similarity.max(similarity);
}
}
(faces1, faces2, best_similarity)
}
};
Ok((faces1.bbox.len(), faces2.bbox.len(), best_similarity))
}
fn crop_face_from_image(
img: &image::RgbImage,
bbox: &bounding_box::Aabb2<usize>,
) -> Result<image::RgbImage, Box<dyn std::error::Error + Send + Sync>> {
let min_point = bbox.min_vertex();
let size = bbox.size();
let x = min_point.x as u32;
let y = min_point.y as u32;
let width = size.x as u32;
let height = size.y as u32;
// Ensure crop bounds are within image
let img_width = img.width();
let img_height = img.height();
let crop_x = x.min(img_width.saturating_sub(1));
let crop_y = y.min(img_height.saturating_sub(1));
let crop_width = width.min(img_width - crop_x);
let crop_height = height.min(img_height - crop_y);
Ok(image::imageops::crop_imm(img, crop_x, crop_y, crop_width, crop_height).to_image())
}
fn cosine_similarity(a: &[f32], b: &[f32]) -> f32 {
let dot_product: f32 = a.iter().zip(b.iter()).map(|(x, y)| x * y).sum();
let norm_a: f32 = a.iter().map(|x| x * x).sum::<f32>().sqrt();
let norm_b: f32 = b.iter().map(|x| x * x).sum::<f32>().sqrt();
if norm_a == 0.0 || norm_b == 0.0 {
0.0
} else {
dot_product / (norm_a * norm_b)
}
}
}

5
src/gui/mod.rs Normal file
View File

@@ -0,0 +1,5 @@
pub mod app;
pub mod bridge;
pub use app::{FaceDetectorApp, Message, run};
pub use bridge::FaceDetectionBridge;