feat: Added threshold for scores and nms

This commit is contained in:
uttarayan21
2025-08-05 13:39:15 +05:30
parent bcb7c94390
commit 561fb2a924
4 changed files with 47 additions and 10 deletions

View File

@@ -47,6 +47,8 @@ pub struct Detect {
pub model_type: Models,
#[clap(short, long)]
pub output: Option<PathBuf>,
#[clap(short, long, default_value_t = 0.8)]
pub threshold: f32,
pub image: PathBuf,
}

View File

@@ -10,6 +10,31 @@ pub struct FaceDetectionConfig {
min_sizes: Vec<Vector2<usize>>,
steps: Vec<usize>,
variance: Vec<f32>,
threshold: f32,
nms_threshold: f32,
}
impl FaceDetectionConfig {
pub fn with_min_sizes(mut self, min_sizes: Vec<Vector2<usize>>) -> Self {
self.min_sizes = min_sizes;
self
}
pub fn with_steps(mut self, steps: Vec<usize>) -> Self {
self.steps = steps;
self
}
pub fn with_variance(mut self, variance: Vec<f32>) -> Self {
self.variance = variance;
self
}
pub fn with_threshold(mut self, threshold: f32) -> Self {
self.threshold = threshold;
self
}
pub fn with_nms_threshold(mut self, nms_threshold: f32) -> Self {
self.nms_threshold = nms_threshold;
self
}
}
impl Default for FaceDetectionConfig {
@@ -22,6 +47,8 @@ impl Default for FaceDetectionConfig {
],
steps: vec![8, 16, 32],
variance: vec![0.1, 0.2],
threshold: 0.8,
nms_threshold: 0.6,
}
}
}
@@ -35,8 +62,13 @@ pub struct FaceDetectionModelOutput {
pub landmark: ndarray::Array3<f32>,
}
pub struct FaceDetectionProcessedOutput {
pub bbox: Vec<Aabb2<f32>>,
pub confidence: Vec<f32>,
}
impl FaceDetectionModelOutput {
pub fn postprocess(self, config: FaceDetectionConfig) -> Result<Vec<Aabb2<f32>>> {
pub fn postprocess(self, config: FaceDetectionConfig) -> Result<FaceDetectionProcessedOutput> {
let mut anchors = Vec::new();
for (k, &step) in config.steps.iter().enumerate() {
let feature_size = 640 / step;
@@ -54,6 +86,7 @@ impl FaceDetectionModelOutput {
}
}
let mut boxes = Vec::new();
let mut scores = Vec::new();
let var0 = config.variance[0];
let var1 = config.variance[1];
let bbox_data = self.bbox;
@@ -74,14 +107,15 @@ impl FaceDetectionModelOutput {
let x_max = pred_cx + pred_w / 2.0;
let y_max = pred_cy + pred_h / 2.0;
let score = conf_data[[0, idx, 1]];
if score > 0.6 {
boxes.push(Aabb2::from_min_max_vertices(
Point2::new(x_min, y_min),
Point2::new(x_max, y_max),
));
if score > config.threshold {
boxes.push(Aabb2::from_x1y1x2y2(x_min, y_min, x_max, y_max));
scores.push(score);
}
}
Ok(boxes)
Ok(FaceDetectionProcessedOutput {
bbox: boxes,
confidence: scores,
})
}
}

View File

@@ -1,5 +1,6 @@
mod cli;
mod errors;
use detector::facedet::retinaface::FaceDetectionConfig;
use errors::*;
use ndarray_image::*;
const RETINAFACE_MODEL: &[u8] = include_bytes!("../models/retinaface.mnn");
@@ -29,11 +30,11 @@ pub fn main() -> Result<()> {
.attach_printable("Failed to detect faces")?;
// output.print(20);
let aabbs = output
.postprocess(Default::default())
.postprocess(FaceDetectionConfig::default().with_threshold(detect.threshold))
.change_context(errors::Error)
.attach_printable("Failed to attach context")?;
for bbox in aabbs {
println!("Detected face: {:?}", bbox);
tracing::info!("Detected face: {:?}", bbox);
use bounding_box::draw::*;
let bbox = bbox
.denormalize(nalgebra::SVector::<f32, 2>::new(