feat: Added facenet

This commit is contained in:
uttarayan21
2025-08-08 15:01:25 +05:30
parent a3ea01b7b6
commit d52b69911f
9 changed files with 208 additions and 94 deletions

64
Cargo.lock generated
View File

@@ -116,15 +116,6 @@ version = "1.0.97"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "dcfed56ad506cb2c684a14971b8861fdc3baaaae314b9e5f9bb532cbe3ba7a4f"
[[package]]
name = "approx"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3f2a05fd1bd10b2527e20a2cd32d8873d115b8b39fe219ee25f42a8aca6ba278"
dependencies = [
"num-traits",
]
[[package]]
name = "approx"
version = "0.5.1"
@@ -253,7 +244,7 @@ dependencies = [
"color",
"itertools 0.14.0",
"nalgebra",
"ndarray 0.16.1",
"ndarray",
"num",
"ordered-float",
"simba",
@@ -506,12 +497,11 @@ dependencies = [
"fast_image_resize",
"image",
"itertools 0.14.0",
"linfa",
"mnn",
"mnn-bridge",
"mnn-sync",
"nalgebra",
"ndarray 0.16.1",
"ndarray",
"ndarray-image",
"ndarray-resize",
"ordered-float",
@@ -1098,20 +1088,6 @@ dependencies = [
"vcpkg",
]
[[package]]
name = "linfa"
version = "0.7.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "56f9097edc7c89d03d526efbacf6d90914e3a8fa53bd56c2d1489e3a90819370"
dependencies = [
"approx 0.4.0",
"ndarray 0.15.6",
"num-traits",
"rand",
"sprs",
"thiserror 1.0.69",
]
[[package]]
name = "litemap"
version = "0.8.0"
@@ -1220,7 +1196,7 @@ source = "git+https://github.com/uttarayan21/mnn-rs?branch=restructure-tensor-ty
dependencies = [
"error-stack",
"mnn",
"ndarray 0.16.1",
"ndarray",
]
[[package]]
@@ -1259,7 +1235,7 @@ version = "0.33.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "26aecdf64b707efd1310e3544d709c5c0ac61c13756046aaaba41be5c4f66a3b"
dependencies = [
"approx 0.5.1",
"approx",
"matrixmultiply",
"nalgebra-macros",
"num-complex",
@@ -1289,20 +1265,6 @@ dependencies = [
"getrandom 0.2.16",
]
[[package]]
name = "ndarray"
version = "0.15.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "adb12d4e967ec485a5f71c6311fe28158e9d6f4bc4a447b474184d0f91a8fa32"
dependencies = [
"approx 0.4.0",
"matrixmultiply",
"num-complex",
"num-integer",
"num-traits",
"rawpointer",
]
[[package]]
name = "ndarray"
version = "0.16.1"
@@ -1323,7 +1285,7 @@ name = "ndarray-image"
version = "0.1.0"
dependencies = [
"image",
"ndarray 0.16.1",
"ndarray",
]
[[package]]
@@ -1333,7 +1295,7 @@ dependencies = [
"bytemuck",
"error-stack",
"fast_image_resize",
"ndarray 0.16.1",
"ndarray",
"num",
"thiserror 2.0.12",
]
@@ -1942,7 +1904,7 @@ version = "0.9.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b3a386a501cd104797982c15ae17aafe8b9261315b5d07e3ec803f2ea26be0fa"
dependencies = [
"approx 0.5.1",
"approx",
"num-complex",
"num-traits",
"paste",
@@ -1979,18 +1941,6 @@ dependencies = [
"lock_api",
]
[[package]]
name = "sprs"
version = "0.11.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "88bab60b0a18fb9b3e0c26e92796b3c3a278bf5fa4880f5ad5cc3bdfb843d0b1"
dependencies = [
"ndarray 0.15.6",
"num-complex",
"num-traits",
"smallvec",
]
[[package]]
name = "stable_deref_trait"
version = "1.2.0"

View File

@@ -12,8 +12,8 @@ mnn = { path = "/Users/fs0c131y/Projects/aftershoot/mnn-rs" }
ndarray-image = { path = "ndarray-image" }
ndarray-resize = { path = "ndarray-resize" }
mnn = { git = "https://github.com/uttarayan21/mnn-rs", version = "0.2.0", features = [
# "metal",
# "coreml",
"metal",
"coreml",
"tracing",
], branch = "restructure-tensor-type" }
mnn-bridge = { git = "https://github.com/uttarayan21/mnn-rs", version = "0.1.0", features = [
@@ -35,7 +35,6 @@ clap_complete = "4.5"
error-stack = "0.5"
fast_image_resize = "5.2.0"
image = "0.25.6"
linfa = "0.7.1"
nalgebra = "0.33.2"
ndarray = "0.16.1"
ndarray-image = { workspace = true }

View File

@@ -4,11 +4,11 @@ pub use color::Rgba8;
use ndarray::{Array1, Array3, ArrayViewMut3};
pub trait Draw<T> {
fn draw(&mut self, item: T, color: color::Rgba8, thickness: usize);
fn draw(&mut self, item: &T, color: color::Rgba8, thickness: usize);
}
impl Draw<Aabb2<usize>> for Array3<u8> {
fn draw(&mut self, item: Aabb2<usize>, color: color::Rgba8, thickness: usize) {
fn draw(&mut self, item: &Aabb2<usize>, color: color::Rgba8, thickness: usize) {
item.draw(self, color, thickness)
}
}

View File

@@ -5,10 +5,17 @@ pub trait Roi<'a, Output> {
type Error;
fn roi(&'a self, aabb: Aabb2<usize>) -> Result<Output, Self::Error>;
}
pub trait RoiMut<'a, Output> {
type Error;
fn roi_mut(&'a mut self, aabb: Aabb2<usize>) -> Result<Output, Self::Error>;
}
pub trait MultiRoi<'a, Output> {
type Error;
fn multi_roi(&'a self, aabbs: &[Aabb2<usize>]) -> Result<Output, Self::Error>;
}
#[derive(thiserror::Error, Debug, Copy, Clone)]
pub enum RoiError {
#[error("Region of intereset is out of bounds")]
@@ -36,7 +43,7 @@ impl<'a, T: Num> RoiMut<'a, ArrayViewMut3<'a, T>> for Array3<T> {
let x2 = aabb.x2();
let y1 = aabb.y1();
let y2 = aabb.y2();
if x1 >= x2 || y1 >= y2 || x2 > self.shape()[1] || y2 > self.shape()[0] {
if x1 > x2 || y1 > y2 || x2 > self.shape()[1] || y2 > self.shape()[0] {
return Err(RoiError::RoiOutOfBounds);
}
Ok(self.slice_mut(ndarray::s![y1..y2, x1..x2, ..]))
@@ -95,3 +102,47 @@ pub fn reborrow_test() {
};
dbg!(y);
}
impl<'a> MultiRoi<'a, Vec<ArrayView3<'a, u8>>> for Array3<u8> {
type Error = RoiError;
fn multi_roi(&'a self, aabbs: &[Aabb2<usize>]) -> Result<Vec<ArrayView3<'a, u8>>, Self::Error> {
let (height, width, _channels) = self.dim();
let outer_aabb = Aabb2::from_x1y1x2y2(0, 0, width, height);
aabbs
.iter()
.map(|aabb| {
let slice_arg =
bbox_to_slice_arg(aabb.clamp(&outer_aabb).ok_or(RoiError::RoiOutOfBounds)?);
Ok(self.slice(slice_arg))
})
.collect::<Result<Vec<_>, RoiError>>()
}
}
impl<'a, 'b> MultiRoi<'a, Vec<ArrayView3<'b, u8>>> for ArrayView3<'b, u8> {
type Error = RoiError;
fn multi_roi(&'a self, aabbs: &[Aabb2<usize>]) -> Result<Vec<ArrayView3<'b, u8>>, Self::Error> {
let (height, width, _channels) = self.dim();
let outer_aabb = Aabb2::from_x1y1x2y2(0, 0, width, height);
aabbs
.iter()
.map(|aabb| {
let slice_arg =
bbox_to_slice_arg(aabb.clamp(&outer_aabb).ok_or(RoiError::RoiOutOfBounds)?);
Ok(self.slice_move(slice_arg))
})
.collect::<Result<Vec<_>, RoiError>>()
}
}
fn bbox_to_slice_arg(
aabb: Aabb2<usize>,
) -> ndarray::SliceInfo<[ndarray::SliceInfoElem; 3], ndarray::Ix3, ndarray::Ix3> {
// This function should convert the bounding box to a slice argument
// For now, we will return a dummy value
let x1 = aabb.x1();
let x2 = aabb.x2();
let y1 = aabb.y1();
let y2 = aabb.y2();
ndarray::s![y1..y2, x1..x2, ..]
}

6
flake.lock generated
View File

@@ -178,11 +178,11 @@
]
},
"locked": {
"lastModified": 1750732748,
"narHash": "sha256-HR2b3RHsPeJm+Fb+1ui8nXibgniVj7hBNvUbXEyz0DU=",
"lastModified": 1754621349,
"narHash": "sha256-JkXUS/nBHyUqVTuL4EDCvUWauTHV78EYfk+WqiTAMQ4=",
"owner": "oxalica",
"repo": "rust-overlay",
"rev": "4b4494b2ba7e8a8041b2e28320b2ee02c115c75f",
"rev": "c448ab42002ac39d3337da10420c414fccfb1088",
"type": "github"
},
"original": {

Binary file not shown.

View File

@@ -261,6 +261,10 @@ impl FaceDetection {
.change_context(Error)
.attach_printable("Failed to load model from bytes")?;
model.set_session_mode(mnn::SessionMode::Release);
model
.set_cache_file("retinaface.cache", 128)
.change_context(Error)
.attach_printable("Failed to set cache file")?;
let bc = mnn::BackendConfig::default().with_memory_mode(mnn::MemoryMode::High);
let sc = mnn::ScheduleConfig::new()
.with_type(mnn::ForwardType::CPU)
@@ -330,13 +334,9 @@ impl FaceDetection {
pub fn run_models(&self, image: ndarray::ArrayView3<u8>) -> Result<FaceDetectionModelOutput> {
#[rustfmt::skip]
use ::tap::*;
let output = self
.handle
.run(move |sr| {
let mut resized = image
.fast_resize(1024, 1024, None)
.change_context(mnn::ErrorKind::TensorError)?
.change_context(Error)?
.mapv(|f| f as f32)
.tap_mut(|arr| {
arr.axis_iter_mut(ndarray::Axis(2))
@@ -350,6 +350,10 @@ impl FaceDetection {
.insert_axis(ndarray::Axis(0))
.as_standard_layout()
.into_owned();
use ::tap::*;
let output = self
.handle
.run(move |sr| {
let tensor = resized
.as_mnn_tensor_mut()
.attach_printable("Failed to convert ndarray to mnn tensor")

View File

@@ -1,4 +1,5 @@
use crate::errors::*;
use mnn_bridge::ndarray::*;
use ndarray::{Array1, Array2, ArrayView3, ArrayView4};
use std::path::Path;
@@ -8,6 +9,8 @@ pub struct EmbeddingGenerator {
}
impl EmbeddingGenerator {
const INPUT_NAME: &'static str = "serving_default_input_6:0";
const OUTPUT_NAME: &'static str = "StatefulPartitionedCall:0";
pub fn new(path: impl AsRef<Path>) -> Result<Self> {
let model = std::fs::read(path)
.change_context(Error)
@@ -22,9 +25,13 @@ impl EmbeddingGenerator {
.change_context(Error)
.attach_printable("Failed to load model from bytes")?;
model.set_session_mode(mnn::SessionMode::Release);
model
.set_cache_file("facenet.cache", 128)
.change_context(Error)
.attach_printable("Failed to set cache file")?;
let bc = mnn::BackendConfig::default().with_memory_mode(mnn::MemoryMode::High);
let sc = mnn::ScheduleConfig::new()
.with_type(mnn::ForwardType::CPU)
.with_type(mnn::ForwardType::Metal)
.with_backend_config(bc);
tracing::info!("Creating session handle for face embedding model");
let handle = mnn_sync::SessionHandle::new(model, sc)
@@ -33,11 +40,55 @@ impl EmbeddingGenerator {
Ok(Self { handle })
}
pub fn embedding(&self, roi: ArrayView3<u8>) -> Result<Array1<u8>> {
todo!()
pub fn run_models(&self, face: ArrayView4<u8>) -> Result<Array2<f32>> {
let tensor = face
// .permuted_axes((0, 3, 1, 2))
.as_standard_layout()
.mapv(|x| x as f32);
let shape: [usize; 4] = tensor.dim().into();
let shape = shape.map(|f| f as i32);
let output = self
.handle
.run(move |sr| {
let tensor = tensor
.as_mnn_tensor()
.attach_printable("Failed to convert ndarray to mnn tensor")
.change_context(mnn::ErrorKind::TensorError)?;
tracing::trace!("Image Tensor shape: {:?}", tensor.shape());
let (intptr, session) = sr.both_mut();
tracing::trace!("Copying input tensor to host");
unsafe {
let mut input = intptr.input_unresized::<f32>(session, Self::INPUT_NAME)?;
tracing::trace!("Input shape: {:?}", input.shape());
if *input.shape() != shape {
tracing::trace!("Resizing input tensor to shape: {:?}", shape);
// input.resize(shape);
intptr.resize_tensor(input.view_mut(), shape);
}
}
intptr.resize_session(session);
let mut input = intptr.input::<f32>(session, Self::INPUT_NAME)?;
tracing::trace!("Input shape: {:?}", input.shape());
input.copy_from_host_tensor(tensor.view())?;
tracing::info!("Running face detection session");
intptr.run_session(&session)?;
let output_tensor = intptr
.output::<f32>(&session, Self::OUTPUT_NAME)?
.create_host_tensor_from_device(true)
.as_ndarray()
.to_owned();
Ok(output_tensor)
})
.change_context(Error)?;
Ok(output)
}
pub fn embeddings(&self, roi: ArrayView4<u8>) -> Result<Array2<u8>> {
todo!()
}
// pub fn embedding(&self, roi: ArrayView3<u8>) -> Result<Array1<u8>> {
// todo!()
// }
// pub fn embeddings(&self, roi: ArrayView4<u8>) -> Result<Array2<u8>> {
// todo!()
// }
}

View File

@@ -1,9 +1,13 @@
mod cli;
mod errors;
use detector::facedet::retinaface::FaceDetectionConfig;
use bounding_box::roi::MultiRoi;
use detector::{facedet::retinaface::FaceDetectionConfig, faceembed};
use errors::*;
use fast_image_resize::ResizeOptions;
use nalgebra::zero;
use ndarray_image::*;
const RETINAFACE_MODEL: &[u8] = include_bytes!("../models/retinaface.mnn");
const FACENET_MODEL: &[u8] = include_bytes!("../models/facenet.mnn");
pub fn main() -> Result<()> {
tracing_subscriber::fmt()
.with_env_filter("trace")
@@ -15,29 +19,84 @@ pub fn main() -> Result<()> {
match args.cmd {
cli::SubCommand::Detect(detect) => {
use detector::facedet;
let model = facedet::retinaface::FaceDetection::new_from_bytes(RETINAFACE_MODEL)
let retinaface = facedet::retinaface::FaceDetection::new_from_bytes(RETINAFACE_MODEL)
.change_context(errors::Error)
.attach_printable("Failed to create face detection model")?;
let facenet = faceembed::facenet::EmbeddingGenerator::new_from_bytes(FACENET_MODEL)
.change_context(errors::Error)
.attach_printable("Failed to create face embedding model")?;
let image = image::open(detect.image).change_context(Error)?;
let image = image.into_rgb8();
let mut array = image
.into_ndarray()
.change_context(errors::Error)
.attach_printable("Failed to convert image to ndarray")?;
let output = model
let output = retinaface
.detect_faces(
array.clone(),
array.view(),
FaceDetectionConfig::default()
.with_threshold(detect.threshold)
.with_nms_threshold(detect.nms_threshold),
)
.change_context(errors::Error)
.attach_printable("Failed to detect faces")?;
for bbox in output.bbox {
for bbox in &output.bbox {
tracing::info!("Detected face: {:?}", bbox);
use bounding_box::draw::*;
array.draw(bbox, color::palette::css::GREEN_YELLOW.to_rgba8(), 1);
}
use ndarray::{Array2, Array3, Array4, Axis};
use ndarray_resize::NdFir;
let face_rois = array
.view()
.multi_roi(&output.bbox)
.change_context(Error)?
.into_iter()
// .inspect(|f| {
// tracing::info!("Face ROI shape before resize: {:?}", f.dim());
// })
.map(|roi| {
roi.as_standard_layout()
.fast_resize(512, 512, &ResizeOptions::default())
.change_context(Error)
})
// .inspect(|f| {
// f.as_ref().inspect(|f| {
// tracing::info!("Face ROI shape after resize: {:?}", f.dim());
// });
// })
.collect::<Result<Vec<_>>>()?;
let face_roi_views = face_rois.iter().map(|roi| roi.view()).collect::<Vec<_>>();
let embeddings = face_roi_views
.chunks(8)
.map(|chunk| {
tracing::info!("Processing chunk of size: {}", chunk.len());
if chunk.len() < 8 {
tracing::warn!("Chunk size is less than 8, padding with zeros");
let zeros = Array3::zeros((512, 512, 3));
let padded: Vec<ndarray::ArrayView3<'_, u8>> = chunk
.iter()
.cloned()
.chain(core::iter::repeat(zeros.view()))
.take(8)
.collect();
let face_rois: Array4<u8> = ndarray::stack(Axis(0), padded.as_slice())
.change_context(errors::Error)
.attach_printable("Failed to stack rois together")?;
let output = facenet.run_models(face_rois.view()).change_context(Error)?;
Ok(output)
} else {
let face_rois: Array4<u8> = ndarray::stack(Axis(0), chunk)
.change_context(errors::Error)
.attach_printable("Failed to stack rois together")?;
let output = facenet.run_models(face_rois.view()).change_context(Error)?;
Ok(output)
}
})
.collect::<Result<Vec<Array2<f32>>>>();
let v = array.view();
if let Some(output) = detect.output {
let image: image::RgbImage = v