Compare commits
33 Commits
5a1f4b9ef6
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
59a3fddc0b | ||
|
|
eb9451aad8 | ||
|
|
c6b3f5279f | ||
|
|
a419a5ac4a | ||
|
|
a340552257 | ||
|
|
aaf34ef74e | ||
|
|
ac8f1d01b4 | ||
|
|
4256c0af74 | ||
|
|
3eec262076 | ||
|
|
c758fd8d41 | ||
|
|
34eaf9348a | ||
|
|
dab7719206 | ||
|
|
4b4d23d1d4 | ||
|
|
aab3d84db0 | ||
|
|
65560825fa | ||
|
|
0a5dbaaadc | ||
|
|
3e14a16739 | ||
|
|
bfa389b497 | ||
|
|
f8122892e0 | ||
|
|
97f64e7e10 | ||
|
|
37adb74adf | ||
|
|
47218fa696 | ||
|
|
61466c9edd | ||
|
|
33798467ba | ||
|
|
3d56db687c | ||
|
|
cd12e97de3 | ||
|
|
bd6520ce5a | ||
|
|
cd9c65ff6b | ||
|
|
cc26391610 | ||
|
|
783320131a | ||
|
|
7fc958b299 | ||
|
|
3aa95a2ef5 | ||
|
|
e7c9c38ed7 |
4
.gitattributes
vendored
4
.gitattributes
vendored
@@ -1,4 +1,4 @@
|
|||||||
models/retinaface.mnn filter=lfs diff=lfs merge=lfs -text
|
|
||||||
models/facenet.mnn filter=lfs diff=lfs merge=lfs -text
|
|
||||||
models/facenet.onnx filter=lfs diff=lfs merge=lfs -text
|
models/facenet.onnx filter=lfs diff=lfs merge=lfs -text
|
||||||
|
models/retinaface.mnn filter=lfs diff=lfs merge=lfs -text
|
||||||
models/retinaface.onnx filter=lfs diff=lfs merge=lfs -text
|
models/retinaface.onnx filter=lfs diff=lfs merge=lfs -text
|
||||||
|
models/facenet.mnn filter=lfs diff=lfs merge=lfs -text
|
||||||
|
|||||||
4507
Cargo.lock
generated
4507
Cargo.lock
generated
File diff suppressed because it is too large
Load Diff
68
Cargo.toml
68
Cargo.toml
@@ -1,19 +1,32 @@
|
|||||||
[workspace]
|
[workspace]
|
||||||
members = ["ndarray-image", "ndarray-resize", ".", "bounding-box"]
|
members = [
|
||||||
|
"ndarray-image",
|
||||||
|
"ndarray-resize",
|
||||||
|
".",
|
||||||
|
"bounding-box",
|
||||||
|
"ndarray-safetensors",
|
||||||
|
"sqlite3-ndarray-math",
|
||||||
|
"ndcv-bridge",
|
||||||
|
"bbox",
|
||||||
|
]
|
||||||
|
|
||||||
[workspace.package]
|
[workspace.package]
|
||||||
version = "0.1.0"
|
version = "0.1.0"
|
||||||
edition = "2024"
|
edition = "2024"
|
||||||
|
|
||||||
[patch."https://github.com/uttarayan21/mnn-rs"]
|
[patch.crates-io]
|
||||||
mnn = { path = "/Users/fs0c131y/Projects/aftershoot/mnn-rs" }
|
linfa = { git = "https://github.com/relf/linfa", branch = "upgrade-ndarray-0.16" }
|
||||||
|
linfa-clustering = { git = "https://github.com/relf/linfa", branch = "upgrade-ndarray-0.16" }
|
||||||
|
|
||||||
[workspace.dependencies]
|
[workspace.dependencies]
|
||||||
|
divan = { version = "0.1.21" }
|
||||||
|
ndarray-npy = "0.9.1"
|
||||||
|
serde = { version = "1.0", features = ["derive"] }
|
||||||
ndarray-image = { path = "ndarray-image" }
|
ndarray-image = { path = "ndarray-image" }
|
||||||
ndarray-resize = { path = "ndarray-resize" }
|
ndarray-resize = { path = "ndarray-resize" }
|
||||||
mnn = { git = "https://github.com/uttarayan21/mnn-rs", version = "0.2.0", features = [
|
mnn = { git = "https://github.com/uttarayan21/mnn-rs", version = "0.2.0", features = [
|
||||||
"metal",
|
# "metal",
|
||||||
"coreml",
|
# "coreml",
|
||||||
"tracing",
|
"tracing",
|
||||||
], branch = "restructure-tensor-type" }
|
], branch = "restructure-tensor-type" }
|
||||||
mnn-bridge = { git = "https://github.com/uttarayan21/mnn-rs", version = "0.1.0", features = [
|
mnn-bridge = { git = "https://github.com/uttarayan21/mnn-rs", version = "0.1.0", features = [
|
||||||
@@ -23,6 +36,15 @@ mnn-sync = { git = "https://github.com/uttarayan21/mnn-rs", version = "0.1.0", f
|
|||||||
"tracing",
|
"tracing",
|
||||||
], branch = "restructure-tensor-type" }
|
], branch = "restructure-tensor-type" }
|
||||||
nalgebra = { version = "0.34.0", default-features = false, features = ["std"] }
|
nalgebra = { version = "0.34.0", default-features = false, features = ["std"] }
|
||||||
|
opencv = { version = "0.95.1" }
|
||||||
|
bounding-box = { path = "bounding-box" }
|
||||||
|
bytemuck = "1.23.2"
|
||||||
|
error-stack = "0.5.0"
|
||||||
|
thiserror = "2.0"
|
||||||
|
fast_image_resize = "5.2.0"
|
||||||
|
img-parts = "0.4.0"
|
||||||
|
ndarray = { version = "0.16.1", features = ["rayon"] }
|
||||||
|
num = "0.4"
|
||||||
|
|
||||||
[package]
|
[package]
|
||||||
name = "detector"
|
name = "detector"
|
||||||
@@ -40,7 +62,7 @@ nalgebra = { workspace = true }
|
|||||||
ndarray = "0.16.1"
|
ndarray = "0.16.1"
|
||||||
ndarray-image = { workspace = true }
|
ndarray-image = { workspace = true }
|
||||||
ndarray-resize = { workspace = true }
|
ndarray-resize = { workspace = true }
|
||||||
rusqlite = { version = "0.37.0", features = ["modern-full"] }
|
rusqlite = { version = "0.37.0", features = ["functions", "modern-full"] }
|
||||||
tap = "1.0.1"
|
tap = "1.0.1"
|
||||||
thiserror = "2.0"
|
thiserror = "2.0"
|
||||||
tokio = "1.43.1"
|
tokio = "1.43.1"
|
||||||
@@ -53,7 +75,39 @@ bounding-box = { version = "0.1.0", path = "bounding-box" }
|
|||||||
color = "0.3.1"
|
color = "0.3.1"
|
||||||
itertools = "0.14.0"
|
itertools = "0.14.0"
|
||||||
ordered-float = "5.0.0"
|
ordered-float = "5.0.0"
|
||||||
ort = "2.0.0-rc.10"
|
ort = { version = "2.0.0-rc.10", default-features = false, features = [
|
||||||
|
"std",
|
||||||
|
"tracing",
|
||||||
|
"ndarray",
|
||||||
|
"cuda",
|
||||||
|
] }
|
||||||
|
ndarray-math = { git = "https://git.darksailor.dev/servius/ndarray-math", version = "0.1.0" }
|
||||||
|
ndarray-safetensors = { version = "0.1.0", path = "ndarray-safetensors" }
|
||||||
|
sqlite3-ndarray-math = { version = "0.1.0", path = "sqlite3-ndarray-math" }
|
||||||
|
|
||||||
|
# GUI dependencies
|
||||||
|
iced = { version = "0.13", features = ["tokio", "image"] }
|
||||||
|
rfd = "0.15"
|
||||||
|
futures = "0.3"
|
||||||
|
imageproc = "0.25"
|
||||||
|
linfa = "0.7.1"
|
||||||
|
linfa-clustering = "0.7.1"
|
||||||
|
|
||||||
[profile.release]
|
[profile.release]
|
||||||
debug = true
|
debug = true
|
||||||
|
|
||||||
|
[features]
|
||||||
|
ort-cuda = []
|
||||||
|
ort-coreml = ["ort/coreml"]
|
||||||
|
ort-tensorrt = ["ort/tensorrt"]
|
||||||
|
ort-tvm = ["ort/tvm"]
|
||||||
|
ort-openvino = ["ort/openvino"]
|
||||||
|
ort-directml = ["ort/directml"]
|
||||||
|
mnn-metal = ["mnn/metal"]
|
||||||
|
mnn-coreml = ["mnn/coreml"]
|
||||||
|
|
||||||
|
default = ["ort-cuda"]
|
||||||
|
|
||||||
|
[[test]]
|
||||||
|
name = "test_bbox_replacement"
|
||||||
|
path = "test_bbox_replacement.rs"
|
||||||
|
|||||||
@@ -1,3 +1,7 @@
|
|||||||
|
[tasks.convert]
|
||||||
|
dependencies = ["convert_facenet", "convert_retinaface"]
|
||||||
|
workspace = false
|
||||||
|
|
||||||
[tasks.convert_facenet]
|
[tasks.convert_facenet]
|
||||||
command = "MNNConvert"
|
command = "MNNConvert"
|
||||||
args = [
|
args = [
|
||||||
@@ -11,6 +15,7 @@ args = [
|
|||||||
"--bizCode",
|
"--bizCode",
|
||||||
"MNN",
|
"MNN",
|
||||||
]
|
]
|
||||||
|
workspace = false
|
||||||
|
|
||||||
[tasks.convert_retinaface]
|
[tasks.convert_retinaface]
|
||||||
command = "MNNConvert"
|
command = "MNNConvert"
|
||||||
@@ -25,3 +30,9 @@ args = [
|
|||||||
"--bizCode",
|
"--bizCode",
|
||||||
"MNN",
|
"MNN",
|
||||||
]
|
]
|
||||||
|
workspace = false
|
||||||
|
|
||||||
|
[tasks.gui]
|
||||||
|
command = "cargo"
|
||||||
|
args = ["run", "--release", "--bin", "gui"]
|
||||||
|
workspace = false
|
||||||
|
|||||||
29
README.md
29
README.md
@@ -55,6 +55,35 @@ cargo run --release detect --output detected.jpg path/to/image.jpg
|
|||||||
cargo run --release detect --threshold 0.9 --nms-threshold 0.4 path/to/image.jpg
|
cargo run --release detect --threshold 0.9 --nms-threshold 0.4 path/to/image.jpg
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### Face Comparison
|
||||||
|
|
||||||
|
Compare faces between two images by computing and comparing their embeddings:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Compare faces in two images
|
||||||
|
cargo run --release compare image1.jpg image2.jpg
|
||||||
|
|
||||||
|
# Compare with custom thresholds
|
||||||
|
cargo run --release compare --threshold 0.9 --nms-threshold 0.4 image1.jpg image2.jpg
|
||||||
|
|
||||||
|
# Use ONNX Runtime backend for comparison
|
||||||
|
cargo run --release compare -p cpu image1.jpg image2.jpg
|
||||||
|
|
||||||
|
# Use MNN with Metal acceleration
|
||||||
|
cargo run --release compare -f metal image1.jpg image2.jpg
|
||||||
|
```
|
||||||
|
|
||||||
|
The compare command will:
|
||||||
|
1. Detect all faces in both images
|
||||||
|
2. Generate embeddings for each detected face
|
||||||
|
3. Compute cosine similarity between all face pairs
|
||||||
|
4. Display similarity scores and the best match
|
||||||
|
5. Provide interpretation of the similarity scores:
|
||||||
|
- **> 0.8**: Very likely the same person
|
||||||
|
- **0.6-0.8**: Possibly the same person
|
||||||
|
- **0.4-0.6**: Unlikely to be the same person
|
||||||
|
- **< 0.4**: Very unlikely to be the same person
|
||||||
|
|
||||||
### Backend Selection
|
### Backend Selection
|
||||||
|
|
||||||
The project supports two inference backends:
|
The project supports two inference backends:
|
||||||
|
|||||||
1
assets/headshots
Symbolic link
1
assets/headshots
Symbolic link
@@ -0,0 +1 @@
|
|||||||
|
/Users/fs0c131y/Pictures/test_cases/compressed/HeadshotJpeg
|
||||||
13
bbox/Cargo.toml
Normal file
13
bbox/Cargo.toml
Normal file
@@ -0,0 +1,13 @@
|
|||||||
|
[package]
|
||||||
|
name = "bbox"
|
||||||
|
version.workspace = true
|
||||||
|
edition.workspace = true
|
||||||
|
|
||||||
|
[dependencies]
|
||||||
|
ndarray.workspace = true
|
||||||
|
num = "0.4.3"
|
||||||
|
serde = { workspace = true, features = ["derive"], optional = true }
|
||||||
|
|
||||||
|
[features]
|
||||||
|
serde = ["dep:serde"]
|
||||||
|
default = ["serde"]
|
||||||
708
bbox/src/lib.rs
Normal file
708
bbox/src/lib.rs
Normal file
@@ -0,0 +1,708 @@
|
|||||||
|
pub mod traits;
|
||||||
|
|
||||||
|
/// A bounding box of co-ordinates whose origin is at the top-left corner.
|
||||||
|
#[derive(
|
||||||
|
Debug, Copy, Clone, PartialEq, PartialOrd, Eq, Hash, serde::Serialize, serde::Deserialize,
|
||||||
|
)]
|
||||||
|
#[non_exhaustive]
|
||||||
|
pub struct BBox<T = f32> {
|
||||||
|
pub x: T,
|
||||||
|
pub y: T,
|
||||||
|
pub width: T,
|
||||||
|
pub height: T,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T> From<[T; 4]> for BBox<T> {
|
||||||
|
fn from([x, y, width, height]: [T; 4]) -> Self {
|
||||||
|
Self {
|
||||||
|
x,
|
||||||
|
y,
|
||||||
|
width,
|
||||||
|
height,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: Copy> BBox<T> {
|
||||||
|
pub fn new(x: T, y: T, width: T, height: T) -> Self {
|
||||||
|
Self {
|
||||||
|
x,
|
||||||
|
y,
|
||||||
|
width,
|
||||||
|
height,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Casts the internal values to another type using [as] keyword
|
||||||
|
pub fn cast<T2>(self) -> BBox<T2>
|
||||||
|
where
|
||||||
|
T: num::cast::AsPrimitive<T2>,
|
||||||
|
T2: Copy + 'static,
|
||||||
|
{
|
||||||
|
BBox {
|
||||||
|
x: self.x.as_(),
|
||||||
|
y: self.y.as_(),
|
||||||
|
width: self.width.as_(),
|
||||||
|
height: self.height.as_(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Clamps all the internal values to the given min and max.
|
||||||
|
pub fn clamp(&self, min: T, max: T) -> Self
|
||||||
|
where
|
||||||
|
T: std::cmp::PartialOrd,
|
||||||
|
{
|
||||||
|
Self {
|
||||||
|
x: num::clamp(self.x, min, max),
|
||||||
|
y: num::clamp(self.y, min, max),
|
||||||
|
width: num::clamp(self.width, min, max),
|
||||||
|
height: num::clamp(self.height, min, max),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn clamp_box(&self, bbox: BBox<T>) -> Self
|
||||||
|
where
|
||||||
|
T: std::cmp::PartialOrd,
|
||||||
|
T: num::Zero,
|
||||||
|
T: core::ops::Add<Output = T>,
|
||||||
|
T: core::ops::Sub<Output = T>,
|
||||||
|
{
|
||||||
|
let x1 = num::clamp(self.x1(), bbox.x1(), bbox.x2());
|
||||||
|
let y1 = num::clamp(self.y1(), bbox.y1(), bbox.y2());
|
||||||
|
let x2 = num::clamp(self.x2(), bbox.x1(), bbox.x2());
|
||||||
|
let y2 = num::clamp(self.y2(), bbox.y1(), bbox.y2());
|
||||||
|
Self::new_xyxy(x1, y1, x2, y2)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn normalize(&self, width: T, height: T) -> Self
|
||||||
|
where
|
||||||
|
T: core::ops::Div<Output = T> + Copy,
|
||||||
|
{
|
||||||
|
Self {
|
||||||
|
x: self.x / width,
|
||||||
|
y: self.y / height,
|
||||||
|
width: self.width / width,
|
||||||
|
height: self.height / height,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Normalize after casting to float
|
||||||
|
pub fn normalize_f64(&self, width: T, height: T) -> BBox<f64>
|
||||||
|
where
|
||||||
|
T: core::ops::Div<Output = T> + Copy,
|
||||||
|
T: num::cast::AsPrimitive<f64>,
|
||||||
|
{
|
||||||
|
BBox {
|
||||||
|
x: self.x.as_() / width.as_(),
|
||||||
|
y: self.y.as_() / height.as_(),
|
||||||
|
width: self.width.as_() / width.as_(),
|
||||||
|
height: self.height.as_() / height.as_(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn denormalize(&self, width: T, height: T) -> Self
|
||||||
|
where
|
||||||
|
T: core::ops::Mul<Output = T> + Copy,
|
||||||
|
{
|
||||||
|
Self {
|
||||||
|
x: self.x * width,
|
||||||
|
y: self.y * height,
|
||||||
|
width: self.width * width,
|
||||||
|
height: self.height * height,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn height(&self) -> T {
|
||||||
|
self.height
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn width(&self) -> T {
|
||||||
|
self.width
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn padding(&self, padding: T) -> Self
|
||||||
|
where
|
||||||
|
T: core::ops::Add<Output = T> + core::ops::Sub<Output = T> + Copy,
|
||||||
|
{
|
||||||
|
Self {
|
||||||
|
x: self.x - padding,
|
||||||
|
y: self.y - padding,
|
||||||
|
width: self.width + padding + padding,
|
||||||
|
height: self.height + padding + padding,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn padding_height(&self, padding: T) -> Self
|
||||||
|
where
|
||||||
|
T: core::ops::Add<Output = T> + core::ops::Sub<Output = T> + Copy,
|
||||||
|
{
|
||||||
|
Self {
|
||||||
|
x: self.x,
|
||||||
|
y: self.y - padding,
|
||||||
|
width: self.width,
|
||||||
|
height: self.height + padding + padding,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn padding_width(&self, padding: T) -> Self
|
||||||
|
where
|
||||||
|
T: core::ops::Add<Output = T> + core::ops::Sub<Output = T> + Copy,
|
||||||
|
{
|
||||||
|
Self {
|
||||||
|
x: self.x - padding,
|
||||||
|
y: self.y,
|
||||||
|
width: self.width + padding + padding,
|
||||||
|
height: self.height,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Enlarge / shrink the bounding box by a factor while
|
||||||
|
// keeping the center point and the aspect ratio fixed
|
||||||
|
pub fn scale(&self, factor: T) -> Self
|
||||||
|
where
|
||||||
|
T: core::ops::Mul<Output = T>,
|
||||||
|
T: core::ops::Sub<Output = T>,
|
||||||
|
T: core::ops::Add<Output = T>,
|
||||||
|
T: core::ops::Div<Output = T>,
|
||||||
|
T: num::One + Copy,
|
||||||
|
{
|
||||||
|
let two = num::one::<T>() + num::one::<T>();
|
||||||
|
let width = self.width * factor;
|
||||||
|
let height = self.height * factor;
|
||||||
|
let width_inc = width - self.width;
|
||||||
|
let height_inc = height - self.height;
|
||||||
|
Self {
|
||||||
|
x: self.x - width_inc / two,
|
||||||
|
y: self.y - height_inc / two,
|
||||||
|
width,
|
||||||
|
height,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn scale_x(&self, factor: T) -> Self
|
||||||
|
where
|
||||||
|
T: core::ops::Mul<Output = T>
|
||||||
|
+ core::ops::Sub<Output = T>
|
||||||
|
+ core::ops::Add<Output = T>
|
||||||
|
+ core::ops::Div<Output = T>
|
||||||
|
+ num::One
|
||||||
|
+ Copy,
|
||||||
|
{
|
||||||
|
let two = num::one::<T>() + num::one::<T>();
|
||||||
|
let width = self.width * factor;
|
||||||
|
let width_inc = width - self.width;
|
||||||
|
Self {
|
||||||
|
x: self.x - width_inc / two,
|
||||||
|
y: self.y,
|
||||||
|
width,
|
||||||
|
height: self.height,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn scale_y(&self, factor: T) -> Self
|
||||||
|
where
|
||||||
|
T: core::ops::Mul<Output = T>
|
||||||
|
+ core::ops::Sub<Output = T>
|
||||||
|
+ core::ops::Add<Output = T>
|
||||||
|
+ core::ops::Div<Output = T>
|
||||||
|
+ num::One
|
||||||
|
+ Copy,
|
||||||
|
{
|
||||||
|
let two = num::one::<T>() + num::one::<T>();
|
||||||
|
let height = self.height * factor;
|
||||||
|
let height_inc = height - self.height;
|
||||||
|
Self {
|
||||||
|
x: self.x,
|
||||||
|
y: self.y - height_inc / two,
|
||||||
|
width: self.width,
|
||||||
|
height,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn offset(&self, offset: Point<T>) -> Self
|
||||||
|
where
|
||||||
|
T: core::ops::Add<Output = T> + Copy,
|
||||||
|
{
|
||||||
|
Self {
|
||||||
|
x: self.x + offset.x,
|
||||||
|
y: self.y + offset.y,
|
||||||
|
width: self.width,
|
||||||
|
height: self.height,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Translate the bounding box by the given offset
|
||||||
|
/// if they are in the same scale
|
||||||
|
pub fn translate(&self, bbox: Self) -> Self
|
||||||
|
where
|
||||||
|
T: core::ops::Add<Output = T> + Copy,
|
||||||
|
{
|
||||||
|
Self {
|
||||||
|
x: self.x + bbox.x,
|
||||||
|
y: self.y + bbox.y,
|
||||||
|
width: self.width,
|
||||||
|
height: self.height,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn with_top_left(&self, top_left: Point<T>) -> Self {
|
||||||
|
Self {
|
||||||
|
x: top_left.x,
|
||||||
|
y: top_left.y,
|
||||||
|
width: self.width,
|
||||||
|
height: self.height,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn center(&self) -> Point<T>
|
||||||
|
where
|
||||||
|
T: core::ops::Add<Output = T> + core::ops::Div<Output = T> + Copy,
|
||||||
|
T: num::One,
|
||||||
|
{
|
||||||
|
let two = T::one() + T::one();
|
||||||
|
Point::new(self.x + self.width / two, self.y + self.height / two)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn area(&self) -> T
|
||||||
|
where
|
||||||
|
T: core::ops::Mul<Output = T> + Copy,
|
||||||
|
{
|
||||||
|
self.width * self.height
|
||||||
|
}
|
||||||
|
|
||||||
|
// Corresponds to self.x1() and self.y1()
|
||||||
|
pub fn top_left(&self) -> Point<T> {
|
||||||
|
Point::new(self.x, self.y)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn top_right(&self) -> Point<T>
|
||||||
|
where
|
||||||
|
T: core::ops::Add<Output = T> + Copy,
|
||||||
|
{
|
||||||
|
Point::new(self.x + self.width, self.y)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn bottom_left(&self) -> Point<T>
|
||||||
|
where
|
||||||
|
T: core::ops::Add<Output = T> + Copy,
|
||||||
|
{
|
||||||
|
Point::new(self.x, self.y + self.height)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Corresponds to self.x2() and self.y2()
|
||||||
|
pub fn bottom_right(&self) -> Point<T>
|
||||||
|
where
|
||||||
|
T: core::ops::Add<Output = T> + Copy,
|
||||||
|
{
|
||||||
|
Point::new(self.x + self.width, self.y + self.height)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub const fn x1(&self) -> T {
|
||||||
|
self.x
|
||||||
|
}
|
||||||
|
|
||||||
|
pub const fn y1(&self) -> T {
|
||||||
|
self.y
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn x2(&self) -> T
|
||||||
|
where
|
||||||
|
T: core::ops::Add<Output = T> + Copy,
|
||||||
|
{
|
||||||
|
self.x + self.width
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn y2(&self) -> T
|
||||||
|
where
|
||||||
|
T: core::ops::Add<Output = T> + Copy,
|
||||||
|
{
|
||||||
|
self.y + self.height
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn overlap(&self, other: &Self) -> T
|
||||||
|
where
|
||||||
|
T: std::cmp::PartialOrd
|
||||||
|
+ traits::min::Min
|
||||||
|
+ traits::max::Max
|
||||||
|
+ num::Zero
|
||||||
|
+ core::ops::Add<Output = T>
|
||||||
|
+ core::ops::Sub<Output = T>
|
||||||
|
+ core::ops::Mul<Output = T>
|
||||||
|
+ Copy,
|
||||||
|
{
|
||||||
|
let x1 = self.x.max(other.x);
|
||||||
|
let y1 = self.y.max(other.y);
|
||||||
|
let x2 = (self.x + self.width).min(other.x + other.width);
|
||||||
|
let y2 = (self.y + self.height).min(other.y + other.height);
|
||||||
|
let width = (x2 - x1).max(T::zero());
|
||||||
|
let height = (y2 - y1).max(T::zero());
|
||||||
|
width * height
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn iou(&self, other: &Self) -> T
|
||||||
|
where
|
||||||
|
T: std::cmp::Ord
|
||||||
|
+ num::Zero
|
||||||
|
+ traits::min::Min
|
||||||
|
+ traits::max::Max
|
||||||
|
+ core::ops::Add<Output = T>
|
||||||
|
+ core::ops::Sub<Output = T>
|
||||||
|
+ core::ops::Mul<Output = T>
|
||||||
|
+ core::ops::Div<Output = T>
|
||||||
|
+ Copy,
|
||||||
|
{
|
||||||
|
let overlap = self.overlap(other);
|
||||||
|
let union = self.area() + other.area() - overlap;
|
||||||
|
overlap / union
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn contains(&self, point: Point<T>) -> bool
|
||||||
|
where
|
||||||
|
T: std::cmp::PartialOrd + core::ops::Add<Output = T> + Copy,
|
||||||
|
{
|
||||||
|
point.x >= self.x
|
||||||
|
&& point.x <= self.x + self.width
|
||||||
|
&& point.y >= self.y
|
||||||
|
&& point.y <= self.y + self.height
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn contains_bbox(&self, other: Self) -> bool
|
||||||
|
where
|
||||||
|
T: std::cmp::PartialOrd + Copy,
|
||||||
|
T: core::ops::Add<Output = T>,
|
||||||
|
{
|
||||||
|
self.contains(other.top_left())
|
||||||
|
&& self.contains(other.top_right())
|
||||||
|
&& self.contains(other.bottom_left())
|
||||||
|
&& self.contains(other.bottom_right())
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn new_xywh(x: T, y: T, width: T, height: T) -> Self {
|
||||||
|
Self {
|
||||||
|
x,
|
||||||
|
y,
|
||||||
|
width,
|
||||||
|
height,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
pub fn new_xyxy(x1: T, y1: T, x2: T, y2: T) -> Self
|
||||||
|
where
|
||||||
|
T: core::ops::Sub<Output = T> + Copy,
|
||||||
|
{
|
||||||
|
Self {
|
||||||
|
x: x1,
|
||||||
|
y: y1,
|
||||||
|
width: x2 - x1,
|
||||||
|
height: y2 - y1,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn containing(box1: Self, box2: Self) -> Self
|
||||||
|
where
|
||||||
|
T: traits::min::Min + traits::max::Max + Copy,
|
||||||
|
T: core::ops::Sub<Output = T>,
|
||||||
|
T: core::ops::Add<Output = T>,
|
||||||
|
{
|
||||||
|
let x1 = box1.x.min(box2.x);
|
||||||
|
let y1 = box1.y.min(box2.y);
|
||||||
|
let x2 = box1.x2().max(box2.x2());
|
||||||
|
let y2 = box1.y2().max(box2.y2());
|
||||||
|
Self::new_xyxy(x1, y1, x2, y2)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: core::ops::Sub<Output = T> + Copy> core::ops::Sub<T> for BBox<T> {
|
||||||
|
type Output = BBox<T>;
|
||||||
|
fn sub(self, rhs: T) -> Self::Output {
|
||||||
|
BBox {
|
||||||
|
x: self.x - rhs,
|
||||||
|
y: self.y - rhs,
|
||||||
|
width: self.width - rhs,
|
||||||
|
height: self.height - rhs,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: core::ops::Add<Output = T> + Copy> core::ops::Add<T> for BBox<T> {
|
||||||
|
type Output = BBox<T>;
|
||||||
|
fn add(self, rhs: T) -> Self::Output {
|
||||||
|
BBox {
|
||||||
|
x: self.x + rhs,
|
||||||
|
y: self.y + rhs,
|
||||||
|
width: self.width + rhs,
|
||||||
|
height: self.height + rhs,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
impl<T: core::ops::Mul<Output = T> + Copy> core::ops::Mul<T> for BBox<T> {
|
||||||
|
type Output = BBox<T>;
|
||||||
|
fn mul(self, rhs: T) -> Self::Output {
|
||||||
|
BBox {
|
||||||
|
x: self.x * rhs,
|
||||||
|
y: self.y * rhs,
|
||||||
|
width: self.width * rhs,
|
||||||
|
height: self.height * rhs,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
impl<T: core::ops::Div<Output = T> + Copy> core::ops::Div<T> for BBox<T> {
|
||||||
|
type Output = BBox<T>;
|
||||||
|
fn div(self, rhs: T) -> Self::Output {
|
||||||
|
BBox {
|
||||||
|
x: self.x / rhs,
|
||||||
|
y: self.y / rhs,
|
||||||
|
width: self.width / rhs,
|
||||||
|
height: self.height / rhs,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T> core::ops::Add<BBox<T>> for BBox<T>
|
||||||
|
where
|
||||||
|
T: core::ops::Sub<Output = T>
|
||||||
|
+ core::ops::Add<Output = T>
|
||||||
|
+ traits::min::Min
|
||||||
|
+ traits::max::Max
|
||||||
|
+ Copy,
|
||||||
|
{
|
||||||
|
type Output = BBox<T>;
|
||||||
|
fn add(self, rhs: BBox<T>) -> Self::Output {
|
||||||
|
let x1 = self.x1().min(rhs.x1());
|
||||||
|
let y1 = self.y1().min(rhs.y1());
|
||||||
|
let x2 = self.x2().max(rhs.x2());
|
||||||
|
let y2 = self.y2().max(rhs.y2());
|
||||||
|
BBox::new_xyxy(x1, y1, x2, y2)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_bbox_add() {
|
||||||
|
let bbox1: BBox<usize> = BBox::new_xyxy(0, 0, 10, 10);
|
||||||
|
let bbox2: BBox<usize> = BBox::new_xyxy(5, 5, 15, 15);
|
||||||
|
let bbox3: BBox<usize> = bbox1 + bbox2;
|
||||||
|
assert_eq!(bbox3, BBox::new_xyxy(0, 0, 15, 15).cast());
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(
|
||||||
|
Debug, Copy, Clone, serde::Serialize, serde::Deserialize, PartialEq, PartialOrd, Eq, Ord, Hash,
|
||||||
|
)]
|
||||||
|
pub struct Point<T = f32> {
|
||||||
|
x: T,
|
||||||
|
y: T,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T> Point<T> {
|
||||||
|
pub const fn new(x: T, y: T) -> Self {
|
||||||
|
Self { x, y }
|
||||||
|
}
|
||||||
|
|
||||||
|
pub const fn x(&self) -> T
|
||||||
|
where
|
||||||
|
T: Copy,
|
||||||
|
{
|
||||||
|
self.x
|
||||||
|
}
|
||||||
|
|
||||||
|
pub const fn y(&self) -> T
|
||||||
|
where
|
||||||
|
T: Copy,
|
||||||
|
{
|
||||||
|
self.y
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn cast<T2>(&self) -> Point<T2>
|
||||||
|
where
|
||||||
|
T: num::cast::AsPrimitive<T2>,
|
||||||
|
T2: Copy + 'static,
|
||||||
|
{
|
||||||
|
Point {
|
||||||
|
x: self.x.as_(),
|
||||||
|
y: self.y.as_(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: core::ops::Sub<T, Output = T> + Copy> core::ops::Sub<Point<T>> for Point<T> {
|
||||||
|
type Output = Point<T>;
|
||||||
|
fn sub(self, rhs: Point<T>) -> Self::Output {
|
||||||
|
Point {
|
||||||
|
x: self.x - rhs.x,
|
||||||
|
y: self.y - rhs.y,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: core::ops::Add<T, Output = T> + Copy> core::ops::Add<Point<T>> for Point<T> {
|
||||||
|
type Output = Point<T>;
|
||||||
|
fn add(self, rhs: Point<T>) -> Self::Output {
|
||||||
|
Point {
|
||||||
|
x: self.x + rhs.x,
|
||||||
|
y: self.y + rhs.y,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: core::ops::Sub<Output = T> + Copy> Point<T> {
|
||||||
|
/// If both the boxes are in the same scale then make the translation of the origin to the
|
||||||
|
/// other box
|
||||||
|
pub fn with_origin(&self, origin: Self) -> Self {
|
||||||
|
*self - origin
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: core::ops::Add<Output = T> + Copy> Point<T> {
|
||||||
|
pub fn translate(&self, point: Point<T>) -> Self {
|
||||||
|
*self + point
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<I: num::Zero> BBox<I>
|
||||||
|
where
|
||||||
|
I: num::cast::AsPrimitive<usize>,
|
||||||
|
{
|
||||||
|
pub fn zeros_ndarray_2d<T: num::Zero + Copy>(&self) -> ndarray::Array2<T> {
|
||||||
|
ndarray::Array2::<T>::zeros((self.height.as_(), self.width.as_()))
|
||||||
|
}
|
||||||
|
pub fn zeros_ndarray_3d<T: num::Zero + Copy>(&self, channels: usize) -> ndarray::Array3<T> {
|
||||||
|
ndarray::Array3::<T>::zeros((self.height.as_(), self.width.as_(), channels))
|
||||||
|
}
|
||||||
|
pub fn ones_ndarray_2d<T: num::One + Copy>(&self) -> ndarray::Array2<T> {
|
||||||
|
ndarray::Array2::<T>::ones((self.height.as_(), self.width.as_()))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: num::Float> BBox<T> {
|
||||||
|
pub fn round(&self) -> Self {
|
||||||
|
Self {
|
||||||
|
x: self.x.round(),
|
||||||
|
y: self.y.round(),
|
||||||
|
width: self.width.round(),
|
||||||
|
height: self.height.round(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod bbox_clamp_tests {
|
||||||
|
use super::*;
|
||||||
|
#[test]
|
||||||
|
pub fn bbox_test_clamp_box() {
|
||||||
|
let large_box = BBox::new(0, 0, 100, 100);
|
||||||
|
let small_box = BBox::new(10, 10, 20, 20);
|
||||||
|
let clamped = large_box.clamp_box(small_box);
|
||||||
|
assert_eq!(clamped, small_box);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
pub fn bbox_test_clamp_box_offset() {
|
||||||
|
let box_a = BBox::new(0, 0, 100, 100);
|
||||||
|
let box_b = BBox::new(-10, -10, 20, 20);
|
||||||
|
let clamped = box_b.clamp_box(box_a);
|
||||||
|
let expected = BBox::new(0, 0, 10, 10);
|
||||||
|
assert_eq!(expected, clamped);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod bbox_padding_tests {
|
||||||
|
use super::*;
|
||||||
|
#[test]
|
||||||
|
pub fn bbox_test_padding() {
|
||||||
|
let bbox = BBox::new(0, 0, 10, 10);
|
||||||
|
let padded = bbox.padding(2);
|
||||||
|
assert_eq!(padded, BBox::new(-2, -2, 14, 14));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
pub fn bbox_test_padding_height() {
|
||||||
|
let bbox = BBox::new(0, 0, 10, 10);
|
||||||
|
let padded = bbox.padding_height(2);
|
||||||
|
assert_eq!(padded, BBox::new(0, -2, 10, 14));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
pub fn bbox_test_padding_width() {
|
||||||
|
let bbox = BBox::new(0, 0, 10, 10);
|
||||||
|
let padded = bbox.padding_width(2);
|
||||||
|
assert_eq!(padded, BBox::new(-2, 0, 14, 10));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
pub fn bbox_test_clamped_padding() {
|
||||||
|
let bbox = BBox::new(0, 0, 10, 10);
|
||||||
|
let padded = bbox.padding(2);
|
||||||
|
let clamp = BBox::new(0, 0, 12, 12);
|
||||||
|
let clamped = padded.clamp_box(clamp);
|
||||||
|
assert_eq!(clamped, clamp);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
pub fn bbox_clamp_failure() {
|
||||||
|
let og = BBox::new(475.0, 79.625, 37.0, 282.15);
|
||||||
|
let padded = BBox {
|
||||||
|
x: 471.3,
|
||||||
|
y: 51.412499999999994,
|
||||||
|
width: 40.69999999999999,
|
||||||
|
height: 338.54999999999995,
|
||||||
|
};
|
||||||
|
let clamp = BBox::new(0.0, 0.0, 512.0, 512.0);
|
||||||
|
let sus = padded.clamp_box(clamp);
|
||||||
|
assert!(clamp.contains_bbox(sus));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod bbox_scale_tests {
|
||||||
|
use super::*;
|
||||||
|
#[test]
|
||||||
|
pub fn bbox_test_scale_int() {
|
||||||
|
let bbox = BBox::new(0, 0, 10, 10);
|
||||||
|
let scaled = bbox.scale(2);
|
||||||
|
assert_eq!(scaled, BBox::new(-5, -5, 20, 20));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
pub fn bbox_test_scale_float() {
|
||||||
|
let bbox = BBox::new(0, 0, 10, 10).cast();
|
||||||
|
let scaled = bbox.scale(1.05); // 5% increase
|
||||||
|
let l = 10.0 * 0.05;
|
||||||
|
assert_eq!(scaled, BBox::new(-l / 2.0, -l / 2.0, 10.0 + l, 10.0 + l));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
pub fn bbox_test_scale_float_negative() {
|
||||||
|
let bbox = BBox::new(0, 0, 10, 10).cast();
|
||||||
|
let scaled = bbox.scale(0.95); // 5% decrease
|
||||||
|
let l = -10.0 * 0.05;
|
||||||
|
assert_eq!(scaled, BBox::new(-l / 2.0, -l / 2.0, 10.0 + l, 10.0 + l));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
pub fn bbox_scale_float() {
|
||||||
|
let bbox = BBox::new_xywh(0, 0, 200, 200);
|
||||||
|
let scaled = bbox.cast::<f64>().scale(1.1).cast::<i32>().clamp(0, 1000);
|
||||||
|
let expected = BBox::new(0, 0, 220, 220);
|
||||||
|
assert_eq!(scaled, expected);
|
||||||
|
}
|
||||||
|
#[test]
|
||||||
|
pub fn add_padding_bbox_example() {
|
||||||
|
// let result = add_padding_bbox(
|
||||||
|
// vec![Rect::new(100, 200, 300, 400)],
|
||||||
|
// (0.1, 0.1),
|
||||||
|
// (1000, 1000),
|
||||||
|
// );
|
||||||
|
// assert_eq!(result[0], Rect::new(70, 160, 360, 480));
|
||||||
|
let bbox = BBox::new(100, 200, 300, 400);
|
||||||
|
let scaled = bbox.cast::<f64>().scale(1.2).cast::<i32>().clamp(0, 1000);
|
||||||
|
assert_eq!(bbox, BBox::new(100, 200, 300, 400));
|
||||||
|
assert_eq!(scaled, BBox::new(70, 160, 360, 480));
|
||||||
|
}
|
||||||
|
#[test]
|
||||||
|
pub fn scale_bboxes() {
|
||||||
|
// let result = scale_bboxes(Rect::new(100, 200, 300, 400), (1000, 1000), (500, 500));
|
||||||
|
// assert_eq!(result[0], Rect::new(200, 400, 600, 800));
|
||||||
|
let bbox = BBox::new(100, 200, 300, 400);
|
||||||
|
let scaled = bbox.scale(2);
|
||||||
|
assert_eq!(scaled, BBox::new(200, 400, 600, 800));
|
||||||
|
}
|
||||||
|
}
|
||||||
2
bbox/src/traits.rs
Normal file
2
bbox/src/traits.rs
Normal file
@@ -0,0 +1,2 @@
|
|||||||
|
pub mod max;
|
||||||
|
pub mod min;
|
||||||
27
bbox/src/traits/max.rs
Normal file
27
bbox/src/traits/max.rs
Normal file
@@ -0,0 +1,27 @@
|
|||||||
|
pub trait Max: Sized + Copy {
|
||||||
|
fn max(self, other: Self) -> Self;
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! impl_max {
|
||||||
|
($($t:ty),*) => {
|
||||||
|
$(
|
||||||
|
impl Max for $t {
|
||||||
|
fn max(self, other: Self) -> Self {
|
||||||
|
Ord::max(self, other)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)*
|
||||||
|
};
|
||||||
|
(float $($t:ty),*) => {
|
||||||
|
$(
|
||||||
|
impl Max for $t {
|
||||||
|
fn max(self, other: Self) -> Self {
|
||||||
|
Self::max(self, other)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)*
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
impl_max!(usize, u8, u16, u32, u64, u128, isize, i8, i16, i32, i64, i128);
|
||||||
|
impl_max!(float f32, f64);
|
||||||
27
bbox/src/traits/min.rs
Normal file
27
bbox/src/traits/min.rs
Normal file
@@ -0,0 +1,27 @@
|
|||||||
|
pub trait Min: Sized + Copy {
|
||||||
|
fn min(self, other: Self) -> Self;
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! impl_min {
|
||||||
|
($($t:ty),*) => {
|
||||||
|
$(
|
||||||
|
impl Min for $t {
|
||||||
|
fn min(self, other: Self) -> Self {
|
||||||
|
Ord::min(self, other)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)*
|
||||||
|
};
|
||||||
|
(float $($t:ty),*) => {
|
||||||
|
$(
|
||||||
|
impl Min for $t {
|
||||||
|
fn min(self, other: Self) -> Self {
|
||||||
|
Self::min(self, other)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)*
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
impl_min!(usize, u8, u16, u32, u64, u128, isize, i8, i16, i32, i64, i128);
|
||||||
|
impl_min!(float f32, f64);
|
||||||
@@ -12,7 +12,10 @@ num = "0.4.3"
|
|||||||
ordered-float = "5.0.0"
|
ordered-float = "5.0.0"
|
||||||
simba = "0.9.0"
|
simba = "0.9.0"
|
||||||
thiserror = "2.0.12"
|
thiserror = "2.0.12"
|
||||||
|
tracing = { version = "0.1.41", optional = true, default-features = false }
|
||||||
|
|
||||||
[features]
|
[features]
|
||||||
ndarray = ["dep:ndarray"]
|
ndarray = ["dep:ndarray"]
|
||||||
default = ["ndarray"]
|
tracing = ["dep:tracing"]
|
||||||
|
|
||||||
|
default = ["ndarray", "tracing"]
|
||||||
|
|||||||
@@ -65,8 +65,9 @@ impl Drawable<Array3<u8>> for Aabb2<usize> {
|
|||||||
pixel.assign(&color);
|
pixel.assign(&color);
|
||||||
})
|
})
|
||||||
})
|
})
|
||||||
.inspect_err(|e| {
|
.inspect_err(|_e| {
|
||||||
dbg!(e);
|
#[cfg(feature = "tracing")]
|
||||||
|
tracing::error!("{_e}")
|
||||||
})
|
})
|
||||||
.ok();
|
.ok();
|
||||||
});
|
});
|
||||||
|
|||||||
@@ -54,7 +54,6 @@ impl<T: Num, const D: usize> AxisAlignedBoundingBox<T, D> {
|
|||||||
if max_point >= min_point {
|
if max_point >= min_point {
|
||||||
Self::from_min_max_vertices(min_point, max_point)
|
Self::from_min_max_vertices(min_point, max_point)
|
||||||
} else {
|
} else {
|
||||||
dbg!(max_point, min_point);
|
|
||||||
panic!("max_point must be greater than or equal to min_point");
|
panic!("max_point must be greater than or equal to min_point");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -164,6 +163,21 @@ impl<T: Num, const D: usize> AxisAlignedBoundingBox<T, D> {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
pub fn scale_uniform(self, scalar: T) -> Self
|
||||||
|
where
|
||||||
|
T: core::ops::MulAssign,
|
||||||
|
T: core::ops::DivAssign,
|
||||||
|
T: core::ops::SubAssign,
|
||||||
|
{
|
||||||
|
let two = T::one() + T::one();
|
||||||
|
let new_size = self.size * scalar;
|
||||||
|
let new_point = self.point.coords - (new_size - self.size) / two;
|
||||||
|
Self {
|
||||||
|
point: Point::from(new_point),
|
||||||
|
size: new_size,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
pub fn contains_bbox(&self, other: &Self) -> bool
|
pub fn contains_bbox(&self, other: &Self) -> bool
|
||||||
where
|
where
|
||||||
T: core::ops::AddAssign,
|
T: core::ops::AddAssign,
|
||||||
@@ -271,15 +285,17 @@ impl<T: Num, const D: usize> AxisAlignedBoundingBox<T, D> {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
// pub fn as_<T2>(&self) -> Option<Aabb<T2, D>>
|
pub fn as_<T2>(&self) -> Aabb<T2, D>
|
||||||
// where
|
where
|
||||||
// T2: Num + simba::scalar::SubsetOf<T>,
|
T2: Num,
|
||||||
// {
|
T: num::cast::AsPrimitive<T2>,
|
||||||
// Some(Aabb {
|
{
|
||||||
// point: Point::from(self.point.coords.as_()),
|
Aabb {
|
||||||
// size: self.size.as_(),
|
point: Point::from(self.point.coords.map(|x| x.as_())),
|
||||||
// })
|
size: self.size.map(|x| x.as_()),
|
||||||
// }
|
}
|
||||||
|
}
|
||||||
|
|
||||||
pub fn measure(&self) -> T
|
pub fn measure(&self) -> T
|
||||||
where
|
where
|
||||||
T: core::ops::MulAssign,
|
T: core::ops::MulAssign,
|
||||||
|
|||||||
BIN
facenet.mnn
BIN
facenet.mnn
Binary file not shown.
24
flake.lock
generated
24
flake.lock
generated
@@ -3,11 +3,11 @@
|
|||||||
"advisory-db": {
|
"advisory-db": {
|
||||||
"flake": false,
|
"flake": false,
|
||||||
"locked": {
|
"locked": {
|
||||||
"lastModified": 1750151065,
|
"lastModified": 1755283329,
|
||||||
"narHash": "sha256-il+CAqChFIB82xP6bO43dWlUVs+NlG7a4g8liIP5HcI=",
|
"narHash": "sha256-33bd+PHbon+cgEiWE/zkr7dpEF5E0DiHOzyoUQbkYBc=",
|
||||||
"owner": "rustsec",
|
"owner": "rustsec",
|
||||||
"repo": "advisory-db",
|
"repo": "advisory-db",
|
||||||
"rev": "7573f55ba337263f61167dbb0ea926cdc7c8eb5d",
|
"rev": "61aac2116c8cb7cc80ff8ca283eec7687d384038",
|
||||||
"type": "github"
|
"type": "github"
|
||||||
},
|
},
|
||||||
"original": {
|
"original": {
|
||||||
@@ -18,11 +18,11 @@
|
|||||||
},
|
},
|
||||||
"crane": {
|
"crane": {
|
||||||
"locked": {
|
"locked": {
|
||||||
"lastModified": 1750266157,
|
"lastModified": 1754269165,
|
||||||
"narHash": "sha256-tL42YoNg9y30u7zAqtoGDNdTyXTi8EALDeCB13FtbQA=",
|
"narHash": "sha256-0tcS8FHd4QjbCVoxN9jI+PjHgA4vc/IjkUSp+N3zy0U=",
|
||||||
"owner": "ipetkov",
|
"owner": "ipetkov",
|
||||||
"repo": "crane",
|
"repo": "crane",
|
||||||
"rev": "e37c943371b73ed87faf33f7583860f81f1d5a48",
|
"rev": "444e81206df3f7d92780680e45858e31d2f07a08",
|
||||||
"type": "github"
|
"type": "github"
|
||||||
},
|
},
|
||||||
"original": {
|
"original": {
|
||||||
@@ -145,11 +145,11 @@
|
|||||||
},
|
},
|
||||||
"nixpkgs": {
|
"nixpkgs": {
|
||||||
"locked": {
|
"locked": {
|
||||||
"lastModified": 1750506804,
|
"lastModified": 1755186698,
|
||||||
"narHash": "sha256-VLFNc4egNjovYVxDGyBYTrvVCgDYgENp5bVi9fPTDYc=",
|
"narHash": "sha256-wNO3+Ks2jZJ4nTHMuks+cxAiVBGNuEBXsT29Bz6HASo=",
|
||||||
"owner": "nixos",
|
"owner": "nixos",
|
||||||
"repo": "nixpkgs",
|
"repo": "nixpkgs",
|
||||||
"rev": "4206c4cb56751df534751b058295ea61357bbbaa",
|
"rev": "fbcf476f790d8a217c3eab4e12033dc4a0f6d23c",
|
||||||
"type": "github"
|
"type": "github"
|
||||||
},
|
},
|
||||||
"original": {
|
"original": {
|
||||||
@@ -178,11 +178,11 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
"locked": {
|
"locked": {
|
||||||
"lastModified": 1754621349,
|
"lastModified": 1755485198,
|
||||||
"narHash": "sha256-JkXUS/nBHyUqVTuL4EDCvUWauTHV78EYfk+WqiTAMQ4=",
|
"narHash": "sha256-C3042ST2lUg0nh734gmuP4lRRIBitA6Maegg2/jYRM4=",
|
||||||
"owner": "oxalica",
|
"owner": "oxalica",
|
||||||
"repo": "rust-overlay",
|
"repo": "rust-overlay",
|
||||||
"rev": "c448ab42002ac39d3337da10420c414fccfb1088",
|
"rev": "aa45e63d431b28802ca4490cfc796b9e31731df7",
|
||||||
"type": "github"
|
"type": "github"
|
||||||
},
|
},
|
||||||
"original": {
|
"original": {
|
||||||
|
|||||||
275
flake.nix
275
flake.nix
@@ -27,31 +27,31 @@
|
|||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
outputs =
|
outputs = {
|
||||||
{
|
self,
|
||||||
self,
|
crane,
|
||||||
crane,
|
flake-utils,
|
||||||
flake-utils,
|
nixpkgs,
|
||||||
nixpkgs,
|
rust-overlay,
|
||||||
rust-overlay,
|
advisory-db,
|
||||||
advisory-db,
|
nix-github-actions,
|
||||||
nix-github-actions,
|
mnn-overlay,
|
||||||
mnn-overlay,
|
mnn-src,
|
||||||
mnn-src,
|
...
|
||||||
...
|
}:
|
||||||
}:
|
|
||||||
flake-utils.lib.eachDefaultSystem (
|
flake-utils.lib.eachDefaultSystem (
|
||||||
system:
|
system: let
|
||||||
let
|
|
||||||
pkgs = import nixpkgs {
|
pkgs = import nixpkgs {
|
||||||
inherit system;
|
inherit system;
|
||||||
|
config.allowUnfree = true;
|
||||||
|
config.cudaSupport = pkgs.stdenv.isLinux;
|
||||||
overlays = [
|
overlays = [
|
||||||
rust-overlay.overlays.default
|
rust-overlay.overlays.default
|
||||||
(final: prev: {
|
(final: prev: {
|
||||||
mnn = mnn-overlay.packages.${system}.mnn.override {
|
mnn = mnn-overlay.packages.${system}.mnn.override {
|
||||||
src = mnn-src;
|
src = mnn-src;
|
||||||
buildConverter = true;
|
buildConverter = true;
|
||||||
enableMetal = true;
|
enableMetal = pkgs.stdenv.isDarwin;
|
||||||
enableOpencl = true;
|
enableOpencl = true;
|
||||||
};
|
};
|
||||||
})
|
})
|
||||||
@@ -77,125 +77,178 @@
|
|||||||
craneLib = (crane.mkLib pkgs).overrideToolchain stableToolchain;
|
craneLib = (crane.mkLib pkgs).overrideToolchain stableToolchain;
|
||||||
craneLibLLvmTools = (crane.mkLib pkgs).overrideToolchain stableToolchainWithLLvmTools;
|
craneLibLLvmTools = (crane.mkLib pkgs).overrideToolchain stableToolchainWithLLvmTools;
|
||||||
|
|
||||||
src =
|
ort_static = (pkgs.onnxruntime.overide {cudaSupport = true;}).overrideAttrs (old: {
|
||||||
let
|
cmakeFlags =
|
||||||
filterBySuffix = path: exts: lib.any (ext: lib.hasSuffix ext path) exts;
|
old.cmakeFlags
|
||||||
sourceFilters =
|
++ [
|
||||||
path: type:
|
"-Donnxruntime_BUILD_SHARED_LIB=OFF"
|
||||||
(craneLib.filterCargoSources path type)
|
"-Donnxruntime_BUILD_STATIC_LIB=ON"
|
||||||
|| filterBySuffix path [
|
];
|
||||||
".c"
|
});
|
||||||
".h"
|
patchedOnnxruntime = pkgs.onnxruntime.overrideAttrs (old: {
|
||||||
".hpp"
|
patches = [./patches/ort_env_global_mutex.patch];
|
||||||
".cpp"
|
});
|
||||||
".cc"
|
src = let
|
||||||
];
|
filterBySuffix = path: exts: lib.any (ext: lib.hasSuffix ext path) exts;
|
||||||
in
|
sourceFilters = path: type:
|
||||||
|
(craneLib.filterCargoSources path type)
|
||||||
|
|| filterBySuffix path [
|
||||||
|
".c"
|
||||||
|
".h"
|
||||||
|
".hpp"
|
||||||
|
".cpp"
|
||||||
|
".cc"
|
||||||
|
".mnn"
|
||||||
|
".onnx"
|
||||||
|
];
|
||||||
|
in
|
||||||
lib.cleanSourceWith {
|
lib.cleanSourceWith {
|
||||||
filter = sourceFilters;
|
filter = sourceFilters;
|
||||||
src = ./.;
|
src = ./.;
|
||||||
};
|
};
|
||||||
commonArgs = {
|
commonArgs =
|
||||||
inherit src;
|
{
|
||||||
pname = name;
|
|
||||||
stdenv = pkgs.clangStdenv;
|
|
||||||
doCheck = false;
|
|
||||||
LIBCLANG_PATH = "${pkgs.llvmPackages.libclang.lib}/lib";
|
|
||||||
# nativeBuildInputs = with pkgs; [
|
|
||||||
# cmake
|
|
||||||
# llvmPackages.libclang.lib
|
|
||||||
# ];
|
|
||||||
buildInputs =
|
|
||||||
with pkgs;
|
|
||||||
[ ]
|
|
||||||
++ (lib.optionals pkgs.stdenv.isDarwin [
|
|
||||||
libiconv
|
|
||||||
apple-sdk_13
|
|
||||||
]);
|
|
||||||
}
|
|
||||||
// (lib.optionalAttrs pkgs.stdenv.isLinux {
|
|
||||||
# BINDGEN_EXTRA_CLANG_ARGS = "-I${pkgs.llvmPackages.libclang.lib}/lib/clang/18/include";
|
|
||||||
});
|
|
||||||
cargoArtifacts = craneLib.buildPackage commonArgs;
|
|
||||||
in
|
|
||||||
{
|
|
||||||
checks = {
|
|
||||||
"${name}-clippy" = craneLib.cargoClippy (
|
|
||||||
commonArgs
|
|
||||||
// {
|
|
||||||
inherit cargoArtifacts;
|
|
||||||
cargoClippyExtraArgs = "--all-targets -- --deny warnings";
|
|
||||||
}
|
|
||||||
);
|
|
||||||
"${name}-docs" = craneLib.cargoDoc (commonArgs // { inherit cargoArtifacts; });
|
|
||||||
"${name}-fmt" = craneLib.cargoFmt { inherit src; };
|
|
||||||
"${name}-toml-fmt" = craneLib.taploFmt {
|
|
||||||
src = pkgs.lib.sources.sourceFilesBySuffices src [ ".toml" ];
|
|
||||||
};
|
|
||||||
# Audit dependencies
|
|
||||||
"${name}-audit" = craneLib.cargoAudit {
|
|
||||||
inherit src advisory-db;
|
|
||||||
};
|
|
||||||
|
|
||||||
# Audit licenses
|
|
||||||
"${name}-deny" = craneLib.cargoDeny {
|
|
||||||
inherit src;
|
inherit src;
|
||||||
};
|
pname = name;
|
||||||
"${name}-nextest" = craneLib.cargoNextest (
|
stdenv = p: p.clangStdenv;
|
||||||
commonArgs
|
doCheck = false;
|
||||||
// {
|
LIBCLANG_PATH = "${pkgs.llvmPackages.libclang.lib}/lib";
|
||||||
inherit cargoArtifacts;
|
# ORT_LIB_LOCATION = "${patchedOnnxruntime}";
|
||||||
partitions = 1;
|
# ORT_ENV_SYSTEM_LIB_LOCATION = "${patchedOnnxruntime}/lib";
|
||||||
partitionType = "count";
|
# ORT_ENV_PREFER_DYNAMIC_LINK = true;
|
||||||
}
|
nativeBuildInputs = with pkgs; [
|
||||||
);
|
cmake
|
||||||
}
|
pkg-config
|
||||||
// lib.optionalAttrs (!pkgs.stdenv.isDarwin) {
|
];
|
||||||
"${name}-llvm-cov" = craneLibLLvmTools.cargoLlvmCov (commonArgs // { inherit cargoArtifacts; });
|
buildInputs = with pkgs;
|
||||||
};
|
[
|
||||||
|
patchedOnnxruntime
|
||||||
packages =
|
sqlite
|
||||||
let
|
]
|
||||||
pkg = craneLib.buildPackage (
|
++ (lib.optionals pkgs.stdenv.isDarwin [
|
||||||
|
libiconv
|
||||||
|
apple-sdk_13
|
||||||
|
]);
|
||||||
|
}
|
||||||
|
// (lib.optionalAttrs pkgs.stdenv.isLinux {
|
||||||
|
# BINDGEN_EXTRA_CLANG_ARGS = "-I${pkgs.llvmPackages.libclang.lib}/lib/clang/18/include";
|
||||||
|
});
|
||||||
|
cargoArtifacts = craneLib.buildPackage commonArgs;
|
||||||
|
in {
|
||||||
|
checks =
|
||||||
|
{
|
||||||
|
"${name}-clippy" = craneLib.cargoClippy (
|
||||||
commonArgs
|
commonArgs
|
||||||
// {
|
// {
|
||||||
inherit cargoArtifacts;
|
inherit cargoArtifacts;
|
||||||
}
|
cargoClippyExtraArgs = "--all-targets -- --deny warnings";
|
||||||
// {
|
|
||||||
nativeBuildInputs = with pkgs; [
|
|
||||||
installShellFiles
|
|
||||||
];
|
|
||||||
postInstall = ''
|
|
||||||
installShellCompletion --cmd ${name} \
|
|
||||||
--bash <($out/bin/${name} completions bash) \
|
|
||||||
--fish <($out/bin/${name} completions fish) \
|
|
||||||
--zsh <($out/bin/${name} completions zsh)
|
|
||||||
'';
|
|
||||||
}
|
}
|
||||||
);
|
);
|
||||||
in
|
"${name}-docs" = craneLib.cargoDoc (commonArgs // {inherit cargoArtifacts;});
|
||||||
{
|
"${name}-fmt" = craneLib.cargoFmt {inherit src;};
|
||||||
"${name}" = pkg;
|
"${name}-toml-fmt" = craneLib.taploFmt {
|
||||||
default = pkg;
|
src = pkgs.lib.sources.sourceFilesBySuffices src [".toml"];
|
||||||
|
};
|
||||||
|
# Audit dependencies
|
||||||
|
"${name}-audit" = craneLib.cargoAudit {
|
||||||
|
inherit src advisory-db;
|
||||||
|
};
|
||||||
|
|
||||||
|
# Audit licenses
|
||||||
|
"${name}-deny" = craneLib.cargoDeny {
|
||||||
|
inherit src;
|
||||||
|
};
|
||||||
|
"${name}-nextest" = craneLib.cargoNextest (
|
||||||
|
commonArgs
|
||||||
|
// {
|
||||||
|
inherit cargoArtifacts;
|
||||||
|
partitions = 1;
|
||||||
|
partitionType = "count";
|
||||||
|
}
|
||||||
|
);
|
||||||
|
}
|
||||||
|
// lib.optionalAttrs (!pkgs.stdenv.isDarwin) {
|
||||||
|
"${name}-llvm-cov" = craneLibLLvmTools.cargoLlvmCov (commonArgs // {inherit cargoArtifacts;});
|
||||||
};
|
};
|
||||||
|
|
||||||
devShells = {
|
packages = let
|
||||||
default = pkgs.mkShell.override { stdenv = pkgs.clangStdenv; } (
|
pkg = craneLib.buildPackage (
|
||||||
commonArgs
|
commonArgs
|
||||||
// {
|
// {
|
||||||
|
inherit cargoArtifacts;
|
||||||
|
}
|
||||||
|
// {
|
||||||
|
nativeBuildInputs = with pkgs;
|
||||||
|
commonArgs.nativeBuildInputs
|
||||||
|
++ [
|
||||||
|
installShellFiles
|
||||||
|
];
|
||||||
|
postInstall = ''
|
||||||
|
installShellCompletion --cmd ${name} \
|
||||||
|
--bash <($out/bin/${name} completions bash) \
|
||||||
|
--fish <($out/bin/${name} completions fish) \
|
||||||
|
--zsh <($out/bin/${name} completions zsh)
|
||||||
|
'';
|
||||||
|
}
|
||||||
|
);
|
||||||
|
in {
|
||||||
|
"${name}" = pkg;
|
||||||
|
default = pkg;
|
||||||
|
onnxruntime = ort_static;
|
||||||
|
};
|
||||||
|
|
||||||
|
devShells = {
|
||||||
|
default = pkgs.mkShell.override {stdenv = pkgs.clangStdenv;} (
|
||||||
|
commonArgs
|
||||||
|
// rec {
|
||||||
LLDB_DEBUGSERVER_PATH = "/Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework/Versions/A/Resources/debugserver";
|
LLDB_DEBUGSERVER_PATH = "/Applications/Xcode.app/Contents/SharedFrameworks/LLDB.framework/Versions/A/Resources/debugserver";
|
||||||
packages =
|
LD_LIBRARY_PATH = "$LD_LIBRARY_PATH:${builtins.toString (pkgs.lib.makeLibraryPath packages)}";
|
||||||
with pkgs;
|
packages = with pkgs;
|
||||||
[
|
[
|
||||||
stableToolchainWithRustAnalyzer
|
stableToolchainWithRustAnalyzer
|
||||||
|
cargo-expand
|
||||||
|
cargo-outdated
|
||||||
cargo-nextest
|
cargo-nextest
|
||||||
cargo-deny
|
cargo-deny
|
||||||
cmake
|
cmake
|
||||||
mnn
|
mnn
|
||||||
cargo-make
|
cargo-make
|
||||||
|
hyperfine
|
||||||
|
opencv
|
||||||
|
uv
|
||||||
|
# (python312.withPackages (ps:
|
||||||
|
# with ps; [
|
||||||
|
# numpy
|
||||||
|
# matplotlib
|
||||||
|
# scikit-learn
|
||||||
|
# opencv-python
|
||||||
|
# seaborn
|
||||||
|
# torch
|
||||||
|
# torchvision
|
||||||
|
# tensorflow-lite
|
||||||
|
# retinaface
|
||||||
|
# facenet-pytorch
|
||||||
|
# tqdm
|
||||||
|
# pillow
|
||||||
|
# orjson
|
||||||
|
# huggingface-hub
|
||||||
|
# # insightface
|
||||||
|
# ]))
|
||||||
]
|
]
|
||||||
++ (lib.optionals pkgs.stdenv.isDarwin [
|
++ (lib.optionals pkgs.stdenv.isDarwin [
|
||||||
apple-sdk_13
|
apple-sdk_13
|
||||||
|
])
|
||||||
|
++ (lib.optionals pkgs.stdenv.isLinux [
|
||||||
|
xorg.libX11
|
||||||
|
xorg.libXcursor
|
||||||
|
xorg.libXrandr
|
||||||
|
xorg.libXi
|
||||||
|
xorg.libxcb
|
||||||
|
libxkbcommon
|
||||||
|
vulkan-loader
|
||||||
|
wayland
|
||||||
|
zenity
|
||||||
|
cudatoolkit
|
||||||
]);
|
]);
|
||||||
}
|
}
|
||||||
);
|
);
|
||||||
@@ -204,7 +257,7 @@
|
|||||||
)
|
)
|
||||||
// {
|
// {
|
||||||
githubActions = nix-github-actions.lib.mkGithubMatrix {
|
githubActions = nix-github-actions.lib.mkGithubMatrix {
|
||||||
checks = nixpkgs.lib.getAttrs [ "x86_64-linux" ] self.checks;
|
checks = nixpkgs.lib.getAttrs ["x86_64-linux"] self.checks;
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|||||||
15
justfile
15
justfile
@@ -1,2 +1,13 @@
|
|||||||
run:
|
run_onnx ep = "cpu" arg = "selfie.jpg":
|
||||||
cargo run -r detect -- ./1000066593.jpg
|
cargo run -r detect -p {{ep}} -t 0.3 -o detected.jpg -- {{arg}}
|
||||||
|
run_mnn forward = "cpu" arg = "selfie.jpg":
|
||||||
|
cargo run -r detect -f {{forward}} -o detected.jpg -- {{arg}}
|
||||||
|
|
||||||
|
open:
|
||||||
|
open detected.jpg
|
||||||
|
|
||||||
|
bench:
|
||||||
|
cargo build --release
|
||||||
|
BINARY="" hyperfine --warmup 3 --export-markdown benchmark.md \
|
||||||
|
"$CARGO_TARGET_DIR/release/detector detect -f cpu selfie.jpg" \
|
||||||
|
"$CARGO_TARGET_DIR/release/detector detect -f cpu -b 1 selfie.jpg"
|
||||||
|
|||||||
BIN
models/facenet.mnn
LFS
BIN
models/facenet.mnn
LFS
Binary file not shown.
BIN
models/facenet.onnx
LFS
BIN
models/facenet.onnx
LFS
Binary file not shown.
BIN
models/retinaface.mnn
LFS
BIN
models/retinaface.mnn
LFS
Binary file not shown.
BIN
models/retinaface.onnx
LFS
BIN
models/retinaface.onnx
LFS
Binary file not shown.
@@ -5,7 +5,7 @@ fn shape_error() -> ndarray::ShapeError {
|
|||||||
|
|
||||||
mod rgb8 {
|
mod rgb8 {
|
||||||
use super::Result;
|
use super::Result;
|
||||||
pub(super) fn image_as_ndarray(image: &image::RgbImage) -> Result<ndarray::ArrayView3<u8>> {
|
pub(super) fn image_as_ndarray(image: &image::RgbImage) -> Result<ndarray::ArrayView3<'_, u8>> {
|
||||||
let (width, height) = image.dimensions();
|
let (width, height) = image.dimensions();
|
||||||
let data = image.as_raw();
|
let data = image.as_raw();
|
||||||
ndarray::ArrayView3::from_shape((height as usize, width as usize, 3), data)
|
ndarray::ArrayView3::from_shape((height as usize, width as usize, 3), data)
|
||||||
@@ -31,7 +31,9 @@ mod rgb8 {
|
|||||||
|
|
||||||
mod rgba8 {
|
mod rgba8 {
|
||||||
use super::Result;
|
use super::Result;
|
||||||
pub(super) fn image_as_ndarray(image: &image::RgbaImage) -> Result<ndarray::ArrayView3<u8>> {
|
pub(super) fn image_as_ndarray(
|
||||||
|
image: &image::RgbaImage,
|
||||||
|
) -> Result<ndarray::ArrayView3<'_, u8>> {
|
||||||
let (width, height) = image.dimensions();
|
let (width, height) = image.dimensions();
|
||||||
let data = image.as_raw();
|
let data = image.as_raw();
|
||||||
ndarray::ArrayView3::from_shape((height as usize, width as usize, 4), data)
|
ndarray::ArrayView3::from_shape((height as usize, width as usize, 4), data)
|
||||||
@@ -57,7 +59,9 @@ mod rgba8 {
|
|||||||
|
|
||||||
mod gray8 {
|
mod gray8 {
|
||||||
use super::Result;
|
use super::Result;
|
||||||
pub(super) fn image_as_ndarray(image: &image::GrayImage) -> Result<ndarray::ArrayView2<u8>> {
|
pub(super) fn image_as_ndarray(
|
||||||
|
image: &image::GrayImage,
|
||||||
|
) -> Result<ndarray::ArrayView2<'_, u8>> {
|
||||||
let (width, height) = image.dimensions();
|
let (width, height) = image.dimensions();
|
||||||
let data = image.as_raw();
|
let data = image.as_raw();
|
||||||
ndarray::ArrayView2::from_shape((height as usize, width as usize), data)
|
ndarray::ArrayView2::from_shape((height as usize, width as usize), data)
|
||||||
@@ -82,7 +86,7 @@ mod gray_alpha8 {
|
|||||||
use super::Result;
|
use super::Result;
|
||||||
pub(super) fn image_as_ndarray(
|
pub(super) fn image_as_ndarray(
|
||||||
image: &image::GrayAlphaImage,
|
image: &image::GrayAlphaImage,
|
||||||
) -> Result<ndarray::ArrayView3<u8>> {
|
) -> Result<ndarray::ArrayView3<'_, u8>> {
|
||||||
let (width, height) = image.dimensions();
|
let (width, height) = image.dimensions();
|
||||||
let data = image.as_raw();
|
let data = image.as_raw();
|
||||||
ndarray::ArrayView3::from_shape((height as usize, width as usize, 2), data)
|
ndarray::ArrayView3::from_shape((height as usize, width as usize, 2), data)
|
||||||
@@ -110,7 +114,7 @@ mod gray_alpha8 {
|
|||||||
|
|
||||||
mod dynamic_image {
|
mod dynamic_image {
|
||||||
use super::*;
|
use super::*;
|
||||||
pub fn image_as_ndarray(image: &image::DynamicImage) -> Result<ndarray::ArrayViewD<u8>> {
|
pub fn image_as_ndarray(image: &image::DynamicImage) -> Result<ndarray::ArrayViewD<'_, u8>> {
|
||||||
Ok(match image {
|
Ok(match image {
|
||||||
image::DynamicImage::ImageRgb8(img) => rgb8::image_as_ndarray(img)?.into_dyn(),
|
image::DynamicImage::ImageRgb8(img) => rgb8::image_as_ndarray(img)?.into_dyn(),
|
||||||
image::DynamicImage::ImageRgba8(img) => rgba8::image_as_ndarray(img)?.into_dyn(),
|
image::DynamicImage::ImageRgba8(img) => rgba8::image_as_ndarray(img)?.into_dyn(),
|
||||||
|
|||||||
@@ -147,7 +147,7 @@ impl<S: ndarray::Data<Elem = T>, T: seal::Sealed + bytemuck::Pod, D: ndarray::Di
|
|||||||
NdAsImage<T, D> for ndarray::ArrayBase<S, D>
|
NdAsImage<T, D> for ndarray::ArrayBase<S, D>
|
||||||
{
|
{
|
||||||
/// Clones self and makes a new image
|
/// Clones self and makes a new image
|
||||||
fn as_image_ref(&self) -> Result<ImageRef> {
|
fn as_image_ref(&self) -> Result<ImageRef<'_>> {
|
||||||
let shape = self.shape();
|
let shape = self.shape();
|
||||||
let rows = *shape
|
let rows = *shape
|
||||||
.first()
|
.first()
|
||||||
|
|||||||
11
ndarray-safetensors/Cargo.toml
Normal file
11
ndarray-safetensors/Cargo.toml
Normal file
@@ -0,0 +1,11 @@
|
|||||||
|
[package]
|
||||||
|
name = "ndarray-safetensors"
|
||||||
|
version.workspace = true
|
||||||
|
edition.workspace = true
|
||||||
|
|
||||||
|
[dependencies]
|
||||||
|
bytemuck = { version = "1.23.2" }
|
||||||
|
half = { version = "2.6.0", default-features = false, features = ["bytemuck"] }
|
||||||
|
ndarray = { version = "0.16.1", default-features = false, features = ["std"] }
|
||||||
|
safetensors = "0.6.2"
|
||||||
|
thiserror = "2.0.15"
|
||||||
449
ndarray-safetensors/src/lib.rs
Normal file
449
ndarray-safetensors/src/lib.rs
Normal file
@@ -0,0 +1,449 @@
|
|||||||
|
//! # ndarray-serialize
|
||||||
|
//!
|
||||||
|
//! A Rust library for serializing and deserializing `ndarray` arrays using the SafeTensors format.
|
||||||
|
//!
|
||||||
|
//! ## Features
|
||||||
|
//! - Serialize `ndarray::ArrayView` to SafeTensors format
|
||||||
|
//! - Deserialize SafeTensors data back to `ndarray::ArrayView`
|
||||||
|
//! - Support for multiple data types (f32, f64, i8-i64, u8-u64, f16, bf16)
|
||||||
|
//! - Zero-copy deserialization when possible
|
||||||
|
//! - Metadata support
|
||||||
|
//!
|
||||||
|
//! ## Example
|
||||||
|
//! ```rust
|
||||||
|
//! use ndarray::Array2;
|
||||||
|
//! use ndarray_safetensors::{SafeArrays, SafeArrayView};
|
||||||
|
//!
|
||||||
|
//! // Create some data
|
||||||
|
//! let array = Array2::<f32>::zeros((3, 4));
|
||||||
|
//!
|
||||||
|
//! // Serialize
|
||||||
|
//! let mut safe_arrays = SafeArrays::new();
|
||||||
|
//! safe_arrays.insert_ndarray("my_tensor", array.view()).unwrap();
|
||||||
|
//! safe_arrays.insert_metadata("author", "example");
|
||||||
|
//! let bytes = safe_arrays.serialize().unwrap();
|
||||||
|
//!
|
||||||
|
//! // Deserialize
|
||||||
|
//! let view = SafeArrayView::from_bytes(&bytes).unwrap();
|
||||||
|
//! let tensor: ndarray::ArrayView2<f32> = view.tensor("my_tensor").unwrap();
|
||||||
|
//! assert_eq!(tensor.shape(), &[3, 4]);
|
||||||
|
//! ```
|
||||||
|
|
||||||
|
use safetensors::View;
|
||||||
|
use std::borrow::Cow;
|
||||||
|
use std::collections::{BTreeMap, HashMap};
|
||||||
|
|
||||||
|
use thiserror::Error;
|
||||||
|
/// Errors that can occur during SafeTensor operations
|
||||||
|
#[derive(Error, Debug)]
|
||||||
|
pub enum SafeTensorError {
|
||||||
|
#[error("Tensor not found: {0}")]
|
||||||
|
TensorNotFound(String),
|
||||||
|
#[error("Invalid tensor data: Got {0} Expected: {1}")]
|
||||||
|
InvalidTensorData(&'static str, String),
|
||||||
|
#[error("IO error: {0}")]
|
||||||
|
IoError(#[from] std::io::Error),
|
||||||
|
#[error("Safetensor error: {0}")]
|
||||||
|
SafeTensor(#[from] safetensors::SafeTensorError),
|
||||||
|
#[error("ndarray::ShapeError error: {0}")]
|
||||||
|
NdarrayShapeError(#[from] ndarray::ShapeError),
|
||||||
|
}
|
||||||
|
|
||||||
|
type Result<T, E = SafeTensorError> = core::result::Result<T, E>;
|
||||||
|
|
||||||
|
use safetensors::tensor::SafeTensors;
|
||||||
|
|
||||||
|
/// A view into SafeTensors data that provides access to ndarray tensors
|
||||||
|
///
|
||||||
|
/// # Example
|
||||||
|
/// ```rust
|
||||||
|
/// use ndarray::Array2;
|
||||||
|
/// use ndarray_safetensors::{SafeArrays, SafeArrayView};
|
||||||
|
///
|
||||||
|
/// let array = Array2::<f32>::ones((2, 3));
|
||||||
|
/// let mut safe_arrays = SafeArrays::new();
|
||||||
|
/// safe_arrays.insert_ndarray("data", array.view()).unwrap();
|
||||||
|
/// let bytes = safe_arrays.serialize().unwrap();
|
||||||
|
///
|
||||||
|
/// let view = SafeArrayView::from_bytes(&bytes).unwrap();
|
||||||
|
/// let tensor: ndarray::ArrayView2<f32> = view.tensor("data").unwrap();
|
||||||
|
/// ```
|
||||||
|
#[derive(Debug)]
|
||||||
|
pub struct SafeArraysView<'a> {
|
||||||
|
pub tensors: SafeTensors<'a>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'a> SafeArraysView<'a> {
|
||||||
|
fn new(tensors: SafeTensors<'a>) -> Self {
|
||||||
|
Self { tensors }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create a SafeArrayView from serialized bytes
|
||||||
|
pub fn from_bytes(bytes: &'a [u8]) -> Result<SafeArraysView<'a>> {
|
||||||
|
let tensors = SafeTensors::deserialize(bytes)?;
|
||||||
|
Ok(Self::new(tensors))
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get a dynamic-dimensional tensor by name
|
||||||
|
pub fn dynamic_tensor<T: STDtype>(&self, name: &str) -> Result<ndarray::ArrayViewD<'a, T>> {
|
||||||
|
self.tensors
|
||||||
|
.tensor(name)
|
||||||
|
.map(|tensor| tensor_view_to_array_view(tensor))?
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get a tensor with specific dimensions by name
|
||||||
|
///
|
||||||
|
/// # Example
|
||||||
|
/// ```rust
|
||||||
|
/// # use ndarray::Array2;
|
||||||
|
/// # use ndarray_safetensors::{SafeArrays, SafeArrayView};
|
||||||
|
/// # let array = Array2::<f32>::ones((2, 3));
|
||||||
|
/// # let mut safe_arrays = SafeArrays::new();
|
||||||
|
/// # safe_arrays.insert_ndarray("data", array.view()).unwrap();
|
||||||
|
/// # let bytes = safe_arrays.serialize().unwrap();
|
||||||
|
/// # let view = SafeArrayView::from_bytes(&bytes).unwrap();
|
||||||
|
/// let tensor: ndarray::ArrayView2<f32> = view.tensor("data").unwrap();
|
||||||
|
/// ```
|
||||||
|
pub fn tensor<T: STDtype, Dim: ndarray::Dimension>(
|
||||||
|
&self,
|
||||||
|
name: &str,
|
||||||
|
) -> Result<ndarray::ArrayView<'a, T, Dim>> {
|
||||||
|
Ok(self
|
||||||
|
.tensors
|
||||||
|
.tensor(name)
|
||||||
|
.map(|tensor| tensor_view_to_array_view(tensor))?
|
||||||
|
.map(|array_view| array_view.into_dimensionality::<Dim>())??)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn tensor_by_index<T: STDtype, Dim: ndarray::Dimension>(
|
||||||
|
&self,
|
||||||
|
index: usize,
|
||||||
|
) -> Result<ndarray::ArrayView<'a, T, Dim>> {
|
||||||
|
self.tensors
|
||||||
|
.iter()
|
||||||
|
.nth(index)
|
||||||
|
.ok_or(SafeTensorError::TensorNotFound(format!(
|
||||||
|
"Index {} out of bounds",
|
||||||
|
index
|
||||||
|
)))
|
||||||
|
.map(|(_, tensor)| tensor_view_to_array_view(tensor))?
|
||||||
|
.map(|array_view| array_view.into_dimensionality::<Dim>())?
|
||||||
|
.map_err(SafeTensorError::NdarrayShapeError)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get an iterator over tensor names
|
||||||
|
pub fn names(&self) -> std::vec::IntoIter<&str> {
|
||||||
|
self.tensors.names().into_iter()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get the number of tensors
|
||||||
|
pub fn len(&self) -> usize {
|
||||||
|
self.tensors.len()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Check if there are no tensors
|
||||||
|
pub fn is_empty(&self) -> bool {
|
||||||
|
self.tensors.is_empty()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Trait for types that can be stored in SafeTensors
|
||||||
|
///
|
||||||
|
/// Implemented for: f32, f64, i8, i16, i32, i64, u8, u16, u32, u64, f16, bf16
|
||||||
|
pub trait STDtype: bytemuck::Pod {
|
||||||
|
fn dtype() -> safetensors::tensor::Dtype;
|
||||||
|
fn size() -> usize {
|
||||||
|
(Self::dtype().bitsize() / 8).max(1)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! impl_dtype {
|
||||||
|
($($t:ty => $dtype:expr),* $(,)?) => {
|
||||||
|
$(
|
||||||
|
impl STDtype for $t {
|
||||||
|
fn dtype() -> safetensors::tensor::Dtype {
|
||||||
|
$dtype
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)*
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
use safetensors::tensor::Dtype;
|
||||||
|
|
||||||
|
impl_dtype!(
|
||||||
|
// bool => Dtype::BOOL, // idk if ndarray::ArrayD<bool> is packed
|
||||||
|
f32 => Dtype::F32,
|
||||||
|
f64 => Dtype::F64,
|
||||||
|
i8 => Dtype::I8,
|
||||||
|
i16 => Dtype::I16,
|
||||||
|
i32 => Dtype::I32,
|
||||||
|
i64 => Dtype::I64,
|
||||||
|
u8 => Dtype::U8,
|
||||||
|
u16 => Dtype::U16,
|
||||||
|
u32 => Dtype::U32,
|
||||||
|
u64 => Dtype::U64,
|
||||||
|
half::f16 => Dtype::F16,
|
||||||
|
half::bf16 => Dtype::BF16,
|
||||||
|
);
|
||||||
|
|
||||||
|
fn tensor_view_to_array_view<'a, T: STDtype>(
|
||||||
|
tensor: safetensors::tensor::TensorView<'a>,
|
||||||
|
) -> Result<ndarray::ArrayViewD<'a, T>> {
|
||||||
|
let shape = tensor.shape();
|
||||||
|
let dtype = tensor.dtype();
|
||||||
|
if T::dtype() != dtype {
|
||||||
|
return Err(SafeTensorError::InvalidTensorData(
|
||||||
|
core::any::type_name::<T>(),
|
||||||
|
dtype.to_string(),
|
||||||
|
));
|
||||||
|
}
|
||||||
|
|
||||||
|
let data = tensor.data();
|
||||||
|
let data: &[T] = bytemuck::cast_slice(data);
|
||||||
|
let array = ndarray::ArrayViewD::from_shape(shape, data)?;
|
||||||
|
Ok(array)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Builder for creating SafeTensors data from ndarray tensors
|
||||||
|
///
|
||||||
|
/// # Example
|
||||||
|
/// ```rust
|
||||||
|
/// use ndarray::{Array1, Array2};
|
||||||
|
/// use ndarray_safetensors::SafeArrays;
|
||||||
|
///
|
||||||
|
/// let mut safe_arrays = SafeArrays::new();
|
||||||
|
///
|
||||||
|
/// let array1 = Array1::<f32>::from_vec(vec![1.0, 2.0, 3.0]);
|
||||||
|
/// let array2 = Array2::<i32>::zeros((2, 2));
|
||||||
|
///
|
||||||
|
/// safe_arrays.insert_ndarray("vector", array1.view()).unwrap();
|
||||||
|
/// safe_arrays.insert_ndarray("matrix", array2.view()).unwrap();
|
||||||
|
/// safe_arrays.insert_metadata("version", "1.0");
|
||||||
|
///
|
||||||
|
/// let bytes = safe_arrays.serialize().unwrap();
|
||||||
|
/// ```
|
||||||
|
#[derive(Debug, Clone, Default)]
|
||||||
|
#[non_exhaustive]
|
||||||
|
pub struct SafeArrays<'a> {
|
||||||
|
pub tensors: BTreeMap<String, SafeArray<'a>>,
|
||||||
|
pub metadata: Option<HashMap<String, String>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'a, K: AsRef<str>> FromIterator<(K, SafeArray<'a>)> for SafeArrays<'a> {
|
||||||
|
fn from_iter<T: IntoIterator<Item = (K, SafeArray<'a>)>>(iter: T) -> Self {
|
||||||
|
let tensors = iter
|
||||||
|
.into_iter()
|
||||||
|
.map(|(k, v)| (k.as_ref().to_owned(), v))
|
||||||
|
.collect();
|
||||||
|
Self {
|
||||||
|
tensors,
|
||||||
|
metadata: None,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'a, K: AsRef<str>, T: IntoIterator<Item = (K, SafeArray<'a>)>> From<T> for SafeArrays<'a> {
|
||||||
|
fn from(iter: T) -> Self {
|
||||||
|
let tensors = iter
|
||||||
|
.into_iter()
|
||||||
|
.map(|(k, v)| (k.as_ref().to_owned(), v))
|
||||||
|
.collect();
|
||||||
|
Self {
|
||||||
|
tensors,
|
||||||
|
metadata: None,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'a> SafeArrays<'a> {
|
||||||
|
/// Create a SafeArrays from an iterator of (name, ndarray::ArrayView) pairs
|
||||||
|
/// ```rust
|
||||||
|
/// use ndarray::{Array2, Array3};
|
||||||
|
/// use ndarray_safetensors::{SafeArrays, SafeArray};
|
||||||
|
/// let array = Array2::<f32>::zeros((3, 4));
|
||||||
|
/// let safe_arrays = SafeArrays::from_ndarrays(vec![
|
||||||
|
/// ("test_tensor", array.view()),
|
||||||
|
/// ("test_tensor2", array.view()),
|
||||||
|
/// ]).unwrap();
|
||||||
|
/// ```
|
||||||
|
|
||||||
|
pub fn from_ndarrays<
|
||||||
|
K: AsRef<str>,
|
||||||
|
T: STDtype,
|
||||||
|
D: ndarray::Dimension + 'a,
|
||||||
|
I: IntoIterator<Item = (K, ndarray::ArrayView<'a, T, D>)>,
|
||||||
|
>(
|
||||||
|
iter: I,
|
||||||
|
) -> Result<Self> {
|
||||||
|
let tensors = iter
|
||||||
|
.into_iter()
|
||||||
|
.map(|(k, v)| Ok((k.as_ref().to_owned(), SafeArray::from_ndarray(v)?)))
|
||||||
|
.collect::<Result<BTreeMap<String, SafeArray<'a>>>>()?;
|
||||||
|
Ok(Self {
|
||||||
|
tensors,
|
||||||
|
metadata: None,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// impl<'a, K: AsRef<str>, T: IntoIterator<Item = (K, SafeArray<'a>)>> From<T> for SafeArrays<'a> {
|
||||||
|
// fn from(iter: T) -> Self {
|
||||||
|
// let tensors = iter
|
||||||
|
// .into_iter()
|
||||||
|
// .map(|(k, v)| (k.as_ref().to_owned(), v))
|
||||||
|
// .collect();
|
||||||
|
// Self {
|
||||||
|
// tensors,
|
||||||
|
// metadata: None,
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
|
||||||
|
impl<'a> SafeArrays<'a> {
|
||||||
|
/// Create a new empty SafeArrays builder
|
||||||
|
pub const fn new() -> Self {
|
||||||
|
Self {
|
||||||
|
tensors: BTreeMap::new(),
|
||||||
|
metadata: None,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Insert a SafeArray tensor with the given name
|
||||||
|
pub fn insert_tensor<'b: 'a>(&mut self, name: impl AsRef<str>, tensor: SafeArray<'b>) {
|
||||||
|
self.tensors.insert(name.as_ref().to_owned(), tensor);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Insert an ndarray tensor with the given name
|
||||||
|
///
|
||||||
|
/// The array must be in standard layout and contiguous.
|
||||||
|
pub fn insert_ndarray<'b: 'a, T: STDtype, D: ndarray::Dimension + 'a>(
|
||||||
|
&mut self,
|
||||||
|
name: impl AsRef<str>,
|
||||||
|
array: ndarray::ArrayView<'b, T, D>,
|
||||||
|
) -> Result<()> {
|
||||||
|
self.insert_tensor(name, SafeArray::from_ndarray(array)?);
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Insert metadata key-value pair
|
||||||
|
pub fn insert_metadata(&mut self, key: impl AsRef<str>, value: impl AsRef<str>) {
|
||||||
|
self.metadata
|
||||||
|
.get_or_insert_default()
|
||||||
|
.insert(key.as_ref().to_owned(), value.as_ref().to_owned());
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Serialize all tensors and metadata to bytes
|
||||||
|
pub fn serialize(self) -> Result<Vec<u8>> {
|
||||||
|
let out = safetensors::serialize(self.tensors, self.metadata)
|
||||||
|
.map_err(SafeTensorError::SafeTensor)?;
|
||||||
|
Ok(out)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A tensor that can be serialized to SafeTensors format
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct SafeArray<'a> {
|
||||||
|
data: Cow<'a, [u8]>,
|
||||||
|
shape: Vec<usize>,
|
||||||
|
dtype: safetensors::tensor::Dtype,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl View for SafeArray<'_> {
|
||||||
|
fn dtype(&self) -> safetensors::tensor::Dtype {
|
||||||
|
self.dtype
|
||||||
|
}
|
||||||
|
|
||||||
|
fn shape(&self) -> &[usize] {
|
||||||
|
&self.shape
|
||||||
|
}
|
||||||
|
|
||||||
|
fn data(&self) -> Cow<'_, [u8]> {
|
||||||
|
self.data.clone()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn data_len(&self) -> usize {
|
||||||
|
self.data.len()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'a> SafeArray<'a> {
|
||||||
|
fn from_ndarray<'b: 'a, T: STDtype, D: ndarray::Dimension + 'a>(
|
||||||
|
array: ndarray::ArrayView<'b, T, D>,
|
||||||
|
) -> Result<Self> {
|
||||||
|
let shape = array.shape().to_vec();
|
||||||
|
let dtype = T::dtype();
|
||||||
|
if array.ndim() == 0 {
|
||||||
|
return Err(SafeTensorError::InvalidTensorData(
|
||||||
|
core::any::type_name::<T>(),
|
||||||
|
"Cannot insert a scalar tensor".to_string(),
|
||||||
|
));
|
||||||
|
}
|
||||||
|
|
||||||
|
if !array.is_standard_layout() {
|
||||||
|
return Err(SafeTensorError::InvalidTensorData(
|
||||||
|
core::any::type_name::<T>(),
|
||||||
|
"ArrayView is not standard layout".to_string(),
|
||||||
|
));
|
||||||
|
}
|
||||||
|
let data =
|
||||||
|
bytemuck::cast_slice(array.to_slice().ok_or(SafeTensorError::InvalidTensorData(
|
||||||
|
core::any::type_name::<T>(),
|
||||||
|
"ArrayView is not contiguous".to_string(),
|
||||||
|
))?);
|
||||||
|
let safe_array = SafeArray {
|
||||||
|
data: Cow::Borrowed(data),
|
||||||
|
shape,
|
||||||
|
dtype,
|
||||||
|
};
|
||||||
|
Ok(safe_array)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_safe_array_from_ndarray() {
|
||||||
|
use ndarray::Array2;
|
||||||
|
|
||||||
|
let array = Array2::<f32>::zeros((3, 4));
|
||||||
|
let safe_array = SafeArray::from_ndarray(array.view()).unwrap();
|
||||||
|
assert_eq!(safe_array.shape, vec![3, 4]);
|
||||||
|
assert_eq!(safe_array.dtype, safetensors::tensor::Dtype::F32);
|
||||||
|
assert_eq!(safe_array.data.len(), 3 * 4 * 4); // 3x4x4 bytes for f32
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_serialize_safe_arrays() {
|
||||||
|
use ndarray::{Array2, Array3};
|
||||||
|
|
||||||
|
let mut safe_arrays = SafeArrays::new();
|
||||||
|
let array = Array2::<f32>::zeros((3, 4));
|
||||||
|
let array2 = Array3::<u16>::zeros((8, 1, 9));
|
||||||
|
safe_arrays
|
||||||
|
.insert_ndarray("test_tensor", array.view())
|
||||||
|
.unwrap();
|
||||||
|
safe_arrays
|
||||||
|
.insert_ndarray("test_tensor2", array2.view())
|
||||||
|
.unwrap();
|
||||||
|
safe_arrays.insert_metadata("author", "example");
|
||||||
|
|
||||||
|
let serialized = safe_arrays.serialize().unwrap();
|
||||||
|
assert!(!serialized.is_empty());
|
||||||
|
|
||||||
|
// Deserialize to check if it works
|
||||||
|
let deserialized = SafeArraysView::from_bytes(&serialized).unwrap();
|
||||||
|
assert_eq!(deserialized.len(), 2);
|
||||||
|
assert_eq!(
|
||||||
|
deserialized
|
||||||
|
.tensor::<f32, ndarray::Ix2>("test_tensor")
|
||||||
|
.unwrap()
|
||||||
|
.shape(),
|
||||||
|
&[3, 4]
|
||||||
|
);
|
||||||
|
assert_eq!(
|
||||||
|
deserialized
|
||||||
|
.tensor::<u16, ndarray::Ix3>("test_tensor2")
|
||||||
|
.unwrap()
|
||||||
|
.shape(),
|
||||||
|
&[8, 1, 9]
|
||||||
|
);
|
||||||
|
}
|
||||||
36
ndcv-bridge/Cargo.toml
Normal file
36
ndcv-bridge/Cargo.toml
Normal file
@@ -0,0 +1,36 @@
|
|||||||
|
[package]
|
||||||
|
name = "ndcv-bridge"
|
||||||
|
version.workspace = true
|
||||||
|
edition.workspace = true
|
||||||
|
|
||||||
|
[dependencies]
|
||||||
|
bounding-box.workspace = true
|
||||||
|
nalgebra.workspace = true
|
||||||
|
bytemuck.workspace = true
|
||||||
|
error-stack.workspace = true
|
||||||
|
fast_image_resize.workspace = true
|
||||||
|
ndarray = { workspace = true, features = ["rayon"] }
|
||||||
|
num.workspace = true
|
||||||
|
opencv = { workspace = true, optional = true }
|
||||||
|
rayon = "1.10.0"
|
||||||
|
thiserror.workspace = true
|
||||||
|
tracing = "0.1.41"
|
||||||
|
wide = "0.7.32"
|
||||||
|
img-parts.workspace = true
|
||||||
|
|
||||||
|
[dev-dependencies]
|
||||||
|
divan.workspace = true
|
||||||
|
ndarray-npy.workspace = true
|
||||||
|
|
||||||
|
[features]
|
||||||
|
opencv = ["dep:opencv"]
|
||||||
|
default = ["opencv"]
|
||||||
|
|
||||||
|
|
||||||
|
[[bench]]
|
||||||
|
name = "conversions"
|
||||||
|
harness = false
|
||||||
|
|
||||||
|
[[bench]]
|
||||||
|
name = "gaussian"
|
||||||
|
harness = false
|
||||||
75
ndcv-bridge/benches/conversions.rs
Normal file
75
ndcv-bridge/benches/conversions.rs
Normal file
@@ -0,0 +1,75 @@
|
|||||||
|
use divan::black_box;
|
||||||
|
use ndcv_bridge::*;
|
||||||
|
|
||||||
|
// #[global_allocator]
|
||||||
|
// static ALLOC: AllocProfiler = AllocProfiler::system();
|
||||||
|
|
||||||
|
fn main() {
|
||||||
|
divan::main();
|
||||||
|
}
|
||||||
|
|
||||||
|
#[divan::bench]
|
||||||
|
fn bench_3d_mat_to_ndarray_512() {
|
||||||
|
bench_mat_to_3d_ndarray(512);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[divan::bench]
|
||||||
|
fn bench_3d_mat_to_ndarray_1024() {
|
||||||
|
bench_mat_to_3d_ndarray(1024);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[divan::bench]
|
||||||
|
fn bench_3d_mat_to_ndarray_2k() {
|
||||||
|
bench_mat_to_3d_ndarray(2048);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[divan::bench]
|
||||||
|
fn bench_3d_mat_to_ndarray_4k() {
|
||||||
|
bench_mat_to_3d_ndarray(4096);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[divan::bench]
|
||||||
|
fn bench_3d_mat_to_ndarray_8k() {
|
||||||
|
bench_mat_to_3d_ndarray(8192);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[divan::bench]
|
||||||
|
fn bench_3d_mat_to_ndarray_8k_ref() {
|
||||||
|
bench_mat_to_3d_ndarray_ref(8192);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[divan::bench]
|
||||||
|
fn bench_2d_mat_to_ndarray_8k_ref() {
|
||||||
|
bench_mat_to_2d_ndarray(8192);
|
||||||
|
}
|
||||||
|
|
||||||
|
fn bench_mat_to_2d_ndarray(size: i32) -> ndarray::Array2<u8> {
|
||||||
|
let mat =
|
||||||
|
opencv::core::Mat::new_nd_with_default(&[size, size], opencv::core::CV_8UC1, (200).into())
|
||||||
|
.expect("failed");
|
||||||
|
let ndarray: ndarray::Array2<u8> = mat.as_ndarray().expect("failed").to_owned();
|
||||||
|
ndarray
|
||||||
|
}
|
||||||
|
|
||||||
|
fn bench_mat_to_3d_ndarray(size: i32) -> ndarray::Array3<u8> {
|
||||||
|
let mat = opencv::core::Mat::new_nd_with_default(
|
||||||
|
&[size, size],
|
||||||
|
opencv::core::CV_8UC3,
|
||||||
|
(200, 100, 10).into(),
|
||||||
|
)
|
||||||
|
.expect("failed");
|
||||||
|
// ndarray::Array3::<u8>::from_mat(black_box(mat)).expect("failed")
|
||||||
|
let ndarray: ndarray::Array3<u8> = mat.as_ndarray().expect("failed").to_owned();
|
||||||
|
ndarray
|
||||||
|
}
|
||||||
|
|
||||||
|
fn bench_mat_to_3d_ndarray_ref(size: i32) {
|
||||||
|
let mut mat = opencv::core::Mat::new_nd_with_default(
|
||||||
|
&[size, size],
|
||||||
|
opencv::core::CV_8UC3,
|
||||||
|
(200, 100, 10).into(),
|
||||||
|
)
|
||||||
|
.expect("failed");
|
||||||
|
let array: ndarray::ArrayView3<u8> = black_box(&mut mat).as_ndarray().expect("failed");
|
||||||
|
let _ = black_box(array);
|
||||||
|
}
|
||||||
265
ndcv-bridge/benches/gaussian.rs
Normal file
265
ndcv-bridge/benches/gaussian.rs
Normal file
@@ -0,0 +1,265 @@
|
|||||||
|
use divan::black_box;
|
||||||
|
use ndarray::*;
|
||||||
|
use ndcv_bridge::*;
|
||||||
|
|
||||||
|
// #[global_allocator]
|
||||||
|
// static ALLOC: AllocProfiler = AllocProfiler::system();
|
||||||
|
|
||||||
|
fn main() {
|
||||||
|
divan::main();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Helper function to create test images with different patterns
|
||||||
|
fn create_test_image(size: usize, pattern: &str) -> Array3<u8> {
|
||||||
|
let mut arr = Array3::<u8>::zeros((size, size, 3));
|
||||||
|
match pattern {
|
||||||
|
"edges" => {
|
||||||
|
// Create a pattern with sharp edges
|
||||||
|
arr.slice_mut(s![size / 4..3 * size / 4, size / 4..3 * size / 4, ..])
|
||||||
|
.fill(255);
|
||||||
|
}
|
||||||
|
"gradient" => {
|
||||||
|
// Create a gradual gradient
|
||||||
|
for i in 0..size {
|
||||||
|
let val = (i * 255 / size) as u8;
|
||||||
|
arr.slice_mut(s![i, .., ..]).fill(val);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
"checkerboard" => {
|
||||||
|
// Create a checkerboard pattern
|
||||||
|
for i in 0..size {
|
||||||
|
for j in 0..size {
|
||||||
|
if (i / 20 + j / 20) % 2 == 0 {
|
||||||
|
arr[[i, j, 0]] = 255;
|
||||||
|
arr[[i, j, 1]] = 255;
|
||||||
|
arr[[i, j, 2]] = 255;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
_ => arr.fill(255), // Default to solid white
|
||||||
|
}
|
||||||
|
arr
|
||||||
|
}
|
||||||
|
|
||||||
|
#[divan::bench_group]
|
||||||
|
mod sizes {
|
||||||
|
use super::*;
|
||||||
|
// Benchmark different image sizes
|
||||||
|
#[divan::bench(args = [512, 1024, 2048, 4096])]
|
||||||
|
fn bench_gaussian_sizes_u8(size: usize) {
|
||||||
|
let arr = Array3::<u8>::ones((size, size, 3));
|
||||||
|
let _out = black_box(
|
||||||
|
arr.gaussian_blur((3, 3), 1.0, 1.0, BorderType::BorderConstant)
|
||||||
|
.unwrap(),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[divan::bench(args = [512, 1024, 2048, 4096])]
|
||||||
|
fn bench_gaussian_sizes_u8_inplace(size: usize) {
|
||||||
|
let mut arr = Array3::<u8>::ones((size, size, 3));
|
||||||
|
black_box(
|
||||||
|
arr.gaussian_blur_inplace((3, 3), 1.0, 1.0, BorderType::BorderConstant)
|
||||||
|
.unwrap(),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[divan::bench(args = [512, 1024, 2048, 4096])]
|
||||||
|
fn bench_gaussian_sizes_f32(size: usize) {
|
||||||
|
let arr = Array3::<f32>::ones((size, size, 3));
|
||||||
|
let _out = black_box(
|
||||||
|
arr.gaussian_blur((3, 3), 1.0, 1.0, BorderType::BorderConstant)
|
||||||
|
.unwrap(),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[divan::bench(args = [512, 1024, 2048, 4096])]
|
||||||
|
fn bench_gaussian_sizes_f32_inplace(size: usize) {
|
||||||
|
let mut arr = Array3::<f32>::ones((size, size, 3));
|
||||||
|
black_box(
|
||||||
|
arr.gaussian_blur_inplace((3, 3), 1.0, 1.0, BorderType::BorderConstant)
|
||||||
|
.unwrap(),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Benchmark different kernel sizes
|
||||||
|
#[divan::bench(args = [(3, 3), (5, 5), (7, 7), (9, 9), (11, 11)])]
|
||||||
|
fn bench_gaussian_kernels(kernel_size: (u8, u8)) {
|
||||||
|
let mut arr = Array3::<u8>::ones((1000, 1000, 3));
|
||||||
|
arr.gaussian_blur_inplace(kernel_size, 1.0, 1.0, BorderType::BorderConstant)
|
||||||
|
.unwrap();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Benchmark different sigma values
|
||||||
|
#[divan::bench(args = [0.5, 1.0, 2.0, 5.0])]
|
||||||
|
fn bench_gaussian_sigmas(sigma: f64) {
|
||||||
|
let mut arr = Array3::<u8>::ones((1000, 1000, 3));
|
||||||
|
arr.gaussian_blur_inplace((3, 3), sigma, sigma, BorderType::BorderConstant)
|
||||||
|
.unwrap();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Benchmark different sigma_x and sigma_y combinations
|
||||||
|
#[divan::bench(args = [(0.5, 2.0), (1.0, 1.0), (2.0, 0.5), (3.0, 1.0)])]
|
||||||
|
fn bench_gaussian_asymmetric_sigmas(sigmas: (f64, f64)) {
|
||||||
|
let mut arr = Array3::<u8>::ones((1000, 1000, 3));
|
||||||
|
arr.gaussian_blur_inplace((3, 3), sigmas.0, sigmas.1, BorderType::BorderConstant)
|
||||||
|
.unwrap();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Benchmark different border types
|
||||||
|
#[divan::bench]
|
||||||
|
fn bench_gaussian_border_types() -> Vec<()> {
|
||||||
|
let border_types = [
|
||||||
|
BorderType::BorderConstant,
|
||||||
|
BorderType::BorderReplicate,
|
||||||
|
BorderType::BorderReflect,
|
||||||
|
BorderType::BorderReflect101,
|
||||||
|
];
|
||||||
|
|
||||||
|
let mut arr = Array3::<u8>::ones((1000, 1000, 3));
|
||||||
|
border_types
|
||||||
|
.iter()
|
||||||
|
.map(|border_type| {
|
||||||
|
arr.gaussian_blur_inplace((3, 3), 1.0, 1.0, *border_type)
|
||||||
|
.unwrap();
|
||||||
|
})
|
||||||
|
.collect()
|
||||||
|
}
|
||||||
|
|
||||||
|
// Benchmark different image patterns
|
||||||
|
#[divan::bench]
|
||||||
|
fn bench_gaussian_patterns() {
|
||||||
|
let patterns = ["edges", "gradient", "checkerboard", "solid"];
|
||||||
|
|
||||||
|
patterns.iter().for_each(|&pattern| {
|
||||||
|
let mut arr = create_test_image(1000, pattern);
|
||||||
|
arr.gaussian_blur_inplace((3, 3), 1.0, 1.0, BorderType::BorderConstant)
|
||||||
|
.unwrap();
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
#[divan::bench_group]
|
||||||
|
mod allocation {
|
||||||
|
use super::*;
|
||||||
|
#[divan::bench]
|
||||||
|
fn bench_gaussian_allocation_inplace() {
|
||||||
|
let mut arr = Array3::<f32>::ones((3840, 2160, 3));
|
||||||
|
|
||||||
|
black_box(
|
||||||
|
arr.gaussian_blur_inplace((3, 3), 1.0, 1.0, BorderType::BorderConstant)
|
||||||
|
.unwrap(),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[divan::bench]
|
||||||
|
fn bench_gaussian_allocation_allocate() {
|
||||||
|
let arr = Array3::<f32>::ones((3840, 2160, 3));
|
||||||
|
|
||||||
|
let _out = black_box(
|
||||||
|
arr.gaussian_blur((3, 3), 1.0, 1.0, BorderType::BorderConstant)
|
||||||
|
.unwrap(),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[divan::bench_group]
|
||||||
|
mod realistic {
|
||||||
|
use super::*;
|
||||||
|
#[divan::bench]
|
||||||
|
fn small_800_600_3x3() {
|
||||||
|
let small_blur = Array3::<u8>::ones((800, 600, 3));
|
||||||
|
let _blurred = black_box(
|
||||||
|
small_blur
|
||||||
|
.gaussian_blur((3, 3), 0.5, 0.5, BorderType::BorderConstant)
|
||||||
|
.unwrap(),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
#[divan::bench]
|
||||||
|
fn small_800_600_3x3_inplace() {
|
||||||
|
let mut small_blur = Array3::<u8>::ones((800, 600, 3));
|
||||||
|
small_blur
|
||||||
|
.gaussian_blur_inplace((3, 3), 0.5, 0.5, BorderType::BorderConstant)
|
||||||
|
.unwrap();
|
||||||
|
}
|
||||||
|
#[divan::bench]
|
||||||
|
fn medium_1920x1080_5x5() {
|
||||||
|
let mut medium_blur = Array3::<u8>::ones((1920, 1080, 3));
|
||||||
|
let _blurred = black_box(
|
||||||
|
medium_blur
|
||||||
|
.gaussian_blur_inplace((5, 5), 2.0, 2.0, BorderType::BorderConstant)
|
||||||
|
.unwrap(),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
#[divan::bench]
|
||||||
|
fn medium_1920x1080_5x5_inplace() {
|
||||||
|
let mut medium_blur = Array3::<u8>::ones((1920, 1080, 3));
|
||||||
|
medium_blur
|
||||||
|
.gaussian_blur_inplace((5, 5), 2.0, 2.0, BorderType::BorderConstant)
|
||||||
|
.unwrap();
|
||||||
|
}
|
||||||
|
#[divan::bench]
|
||||||
|
fn large_3840x2160_9x9() {
|
||||||
|
let large_blur = Array3::<u8>::ones((3840, 2160, 3));
|
||||||
|
let _blurred = black_box(
|
||||||
|
large_blur
|
||||||
|
.gaussian_blur((9, 9), 5.0, 5.0, BorderType::BorderConstant)
|
||||||
|
.unwrap(),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
#[divan::bench]
|
||||||
|
fn large_3840x2160_9x9_inplace() {
|
||||||
|
let mut large_blur = Array3::<u8>::ones((3840, 2160, 3));
|
||||||
|
large_blur
|
||||||
|
.gaussian_blur_inplace((9, 9), 5.0, 5.0, BorderType::BorderConstant)
|
||||||
|
.unwrap();
|
||||||
|
}
|
||||||
|
#[divan::bench]
|
||||||
|
fn small_800_600_3x3_f32() {
|
||||||
|
let small_blur = Array3::<f32>::ones((800, 600, 3));
|
||||||
|
let _blurred = black_box(
|
||||||
|
small_blur
|
||||||
|
.gaussian_blur((3, 3), 0.5, 0.5, BorderType::BorderConstant)
|
||||||
|
.unwrap(),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
#[divan::bench]
|
||||||
|
fn small_800_600_3x3_inplace_f32() {
|
||||||
|
let mut small_blur = Array3::<f32>::ones((800, 600, 3));
|
||||||
|
small_blur
|
||||||
|
.gaussian_blur_inplace((3, 3), 0.5, 0.5, BorderType::BorderConstant)
|
||||||
|
.unwrap();
|
||||||
|
}
|
||||||
|
#[divan::bench]
|
||||||
|
fn medium_1920x1080_5x5_f32() {
|
||||||
|
let mut medium_blur = Array3::<f32>::ones((1920, 1080, 3));
|
||||||
|
let _blurred = black_box(
|
||||||
|
medium_blur
|
||||||
|
.gaussian_blur_inplace((5, 5), 2.0, 2.0, BorderType::BorderConstant)
|
||||||
|
.unwrap(),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
#[divan::bench]
|
||||||
|
fn medium_1920x1080_5x5_inplace_f32() {
|
||||||
|
let mut medium_blur = Array3::<f32>::ones((1920, 1080, 3));
|
||||||
|
medium_blur
|
||||||
|
.gaussian_blur_inplace((5, 5), 2.0, 2.0, BorderType::BorderConstant)
|
||||||
|
.unwrap();
|
||||||
|
}
|
||||||
|
#[divan::bench]
|
||||||
|
fn large_3840x2160_9x9_f32() {
|
||||||
|
let large_blur = Array3::<f32>::ones((3840, 2160, 3));
|
||||||
|
let _blurred = black_box(
|
||||||
|
large_blur
|
||||||
|
.gaussian_blur((9, 9), 5.0, 5.0, BorderType::BorderConstant)
|
||||||
|
.unwrap(),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
#[divan::bench]
|
||||||
|
fn large_3840x2160_9x9_inplace_f32() {
|
||||||
|
let mut large_blur = Array3::<f32>::ones((3840, 2160, 3));
|
||||||
|
large_blur
|
||||||
|
.gaussian_blur_inplace((9, 9), 5.0, 5.0, BorderType::BorderConstant)
|
||||||
|
.unwrap();
|
||||||
|
}
|
||||||
|
}
|
||||||
180
ndcv-bridge/src/blend.rs
Normal file
180
ndcv-bridge/src/blend.rs
Normal file
@@ -0,0 +1,180 @@
|
|||||||
|
use crate::prelude_::*;
|
||||||
|
use ndarray::*;
|
||||||
|
|
||||||
|
type Result<T, E = Report<NdCvError>> = std::result::Result<T, E>;
|
||||||
|
|
||||||
|
mod seal {
|
||||||
|
pub trait Sealed {}
|
||||||
|
impl<T: ndarray::Data<Elem = f32>> Sealed for ndarray::ArrayBase<T, ndarray::Ix3> {}
|
||||||
|
}
|
||||||
|
pub trait NdBlend<T, D: ndarray::Dimension>: seal::Sealed {
|
||||||
|
fn blend(
|
||||||
|
&self,
|
||||||
|
mask: ndarray::ArrayView<T, D::Smaller>,
|
||||||
|
other: ndarray::ArrayView<T, D>,
|
||||||
|
alpha: T,
|
||||||
|
) -> Result<ndarray::Array<T, D>>;
|
||||||
|
fn blend_inplace(
|
||||||
|
&mut self,
|
||||||
|
mask: ndarray::ArrayView<T, D::Smaller>,
|
||||||
|
other: ndarray::ArrayView<T, D>,
|
||||||
|
alpha: T,
|
||||||
|
) -> Result<()>;
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<S> NdBlend<f32, Ix3> for ndarray::ArrayBase<S, Ix3>
|
||||||
|
where
|
||||||
|
S: ndarray::DataMut<Elem = f32>,
|
||||||
|
{
|
||||||
|
fn blend(
|
||||||
|
&self,
|
||||||
|
mask: ndarray::ArrayView<f32, Ix2>,
|
||||||
|
other: ndarray::ArrayView<f32, Ix3>,
|
||||||
|
alpha: f32,
|
||||||
|
) -> Result<ndarray::Array<f32, Ix3>> {
|
||||||
|
if self.shape() != other.shape() {
|
||||||
|
return Err(NdCvError)
|
||||||
|
.attach_printable("Shapes of image and other imagge do not match");
|
||||||
|
}
|
||||||
|
if self.shape()[0] != mask.shape()[0] || self.shape()[1] != mask.shape()[1] {
|
||||||
|
return Err(NdCvError).attach_printable("Shapes of image and mask do not match");
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut output = ndarray::Array3::zeros(self.dim());
|
||||||
|
let (_height, _width, channels) = self.dim();
|
||||||
|
|
||||||
|
Zip::from(output.lanes_mut(Axis(2)))
|
||||||
|
.and(self.lanes(Axis(2)))
|
||||||
|
.and(other.lanes(Axis(2)))
|
||||||
|
.and(mask)
|
||||||
|
.par_for_each(|mut out, this, other, mask| {
|
||||||
|
let this = wide::f32x4::from(this.as_slice().expect("Invalid self array"));
|
||||||
|
let other = wide::f32x4::from(other.as_slice().expect("Invalid other array"));
|
||||||
|
let mask = wide::f32x4::splat(mask * alpha);
|
||||||
|
let o = this * (1.0 - mask) + other * mask;
|
||||||
|
out.as_slice_mut()
|
||||||
|
.expect("Failed to get mutable slice")
|
||||||
|
.copy_from_slice(&o.as_array_ref()[..channels]);
|
||||||
|
});
|
||||||
|
|
||||||
|
Ok(output)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn blend_inplace(
|
||||||
|
&mut self,
|
||||||
|
mask: ndarray::ArrayView<f32, <Ix3 as Dimension>::Smaller>,
|
||||||
|
other: ndarray::ArrayView<f32, Ix3>,
|
||||||
|
alpha: f32,
|
||||||
|
) -> Result<()> {
|
||||||
|
if self.shape() != other.shape() {
|
||||||
|
return Err(NdCvError)
|
||||||
|
.attach_printable("Shapes of image and other imagge do not match");
|
||||||
|
}
|
||||||
|
if self.shape()[0] != mask.shape()[0] || self.shape()[1] != mask.shape()[1] {
|
||||||
|
return Err(NdCvError).attach_printable("Shapes of image and mask do not match");
|
||||||
|
}
|
||||||
|
|
||||||
|
let (_height, _width, channels) = self.dim();
|
||||||
|
|
||||||
|
// Zip::from(self.lanes_mut(Axis(2)))
|
||||||
|
// .and(other.lanes(Axis(2)))
|
||||||
|
// .and(mask)
|
||||||
|
// .par_for_each(|mut this, other, mask| {
|
||||||
|
// let this_wide = wide::f32x4::from(this.as_slice().expect("Invalid self array"));
|
||||||
|
// let other = wide::f32x4::from(other.as_slice().expect("Invalid other array"));
|
||||||
|
// let mask = wide::f32x4::splat(mask * alpha);
|
||||||
|
// let o = this_wide * (1.0 - mask) + other * mask;
|
||||||
|
// this.as_slice_mut()
|
||||||
|
// .expect("Failed to get mutable slice")
|
||||||
|
// .copy_from_slice(&o.as_array_ref()[..channels]);
|
||||||
|
// });
|
||||||
|
let this = self
|
||||||
|
.as_slice_mut()
|
||||||
|
.ok_or(NdCvError)
|
||||||
|
.attach_printable("Failed to get source image as a continuous slice")?;
|
||||||
|
let other = other
|
||||||
|
.as_slice()
|
||||||
|
.ok_or(NdCvError)
|
||||||
|
.attach_printable("Failed to get other image as a continuous slice")?;
|
||||||
|
let mask = mask
|
||||||
|
.as_slice()
|
||||||
|
.ok_or(NdCvError)
|
||||||
|
.attach_printable("Failed to get mask as a continuous slice")?;
|
||||||
|
|
||||||
|
use rayon::prelude::*;
|
||||||
|
this.par_chunks_exact_mut(channels)
|
||||||
|
.zip(other.par_chunks_exact(channels))
|
||||||
|
.zip(mask)
|
||||||
|
.for_each(|((this, other), mask)| {
|
||||||
|
let this_wide = wide::f32x4::from(&*this);
|
||||||
|
let other = wide::f32x4::from(other);
|
||||||
|
let mask = wide::f32x4::splat(mask * alpha);
|
||||||
|
this.copy_from_slice(
|
||||||
|
&(this_wide * (1.0 - mask) + other * mask).as_array_ref()[..channels],
|
||||||
|
);
|
||||||
|
});
|
||||||
|
|
||||||
|
// for h in 0.._height {
|
||||||
|
// for w in 0.._width {
|
||||||
|
// let mask_index = h * _width + w;
|
||||||
|
// let mask = mask[mask_index];
|
||||||
|
// let mask = wide::f32x4::splat(mask * alpha);
|
||||||
|
// let this = &mut this[mask_index * channels..(mask_index + 1) * channels];
|
||||||
|
// let other = &other[mask_index * channels..(mask_index + 1) * channels];
|
||||||
|
// let this_wide = wide::f32x4::from(&*this);
|
||||||
|
// let other = wide::f32x4::from(other);
|
||||||
|
// let o = this_wide * (1.0 - mask) + other * mask;
|
||||||
|
// this.copy_from_slice(&o.as_array_ref()[..channels]);
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
pub fn test_blend() {
|
||||||
|
let img = Array3::<f32>::from_shape_fn((10, 10, 3), |(i, j, k)| match (i, j, k) {
|
||||||
|
(0..=3, _, 0) => 1f32, // red
|
||||||
|
(4..=6, _, 1) => 1f32, // green
|
||||||
|
(7..=9, _, 2) => 1f32, // blue
|
||||||
|
_ => 0f32,
|
||||||
|
});
|
||||||
|
let other = img.clone().permuted_axes([1, 0, 2]).to_owned();
|
||||||
|
let mask = Array2::<f32>::from_shape_fn((10, 10), |(_, j)| if j > 5 { 1f32 } else { 0f32 });
|
||||||
|
// let other = Array3::<f32>::zeros((10, 10, 3));
|
||||||
|
let out = img.blend(mask.view(), other.view(), 1f32).unwrap();
|
||||||
|
let out_u8 = out.mapv(|v| (v * 255f32) as u8);
|
||||||
|
let expected = Array3::<u8>::from_shape_fn((10, 10, 3), |(i, j, k)| {
|
||||||
|
match (i, j, k) {
|
||||||
|
(0..=3, 0..=5, 0) => u8::MAX, // red
|
||||||
|
(4..=6, 0..=5, 1) | (_, 6, 1) => u8::MAX, // green
|
||||||
|
(7..=9, 0..=5, 2) | (_, 7..=10, 2) => u8::MAX, // blue
|
||||||
|
_ => u8::MIN,
|
||||||
|
}
|
||||||
|
});
|
||||||
|
assert_eq!(out_u8, expected);
|
||||||
|
}
|
||||||
|
|
||||||
|
// #[test]
|
||||||
|
// pub fn test_blend_inplace() {
|
||||||
|
// let mut img = Array3::<f32>::from_shape_fn((10, 10, 3), |(i, j, k)| match (i, j, k) {
|
||||||
|
// (0..=3, _, 0) => 1f32, // red
|
||||||
|
// (4..=6, _, 1) => 1f32, // green
|
||||||
|
// (7..=9, _, 2) => 1f32, // blue
|
||||||
|
// _ => 0f32,
|
||||||
|
// });
|
||||||
|
// let other = img.clone().permuted_axes([1, 0, 2]);
|
||||||
|
// let mask = Array2::<f32>::from_shape_fn((10, 10), |(_, j)| if j > 5 { 1f32 } else { 0f32 });
|
||||||
|
// // let other = Array3::<f32>::zeros((10, 10, 3));
|
||||||
|
// img.blend_inplace(mask.view(), other.view(), 1f32).unwrap();
|
||||||
|
// let out_u8 = img.mapv(|v| (v * 255f32) as u8);
|
||||||
|
// let expected = Array3::<u8>::from_shape_fn((10, 10, 3), |(i, j, k)| {
|
||||||
|
// match (i, j, k) {
|
||||||
|
// (0..=3, 0..=5, 0) => u8::MAX, // red
|
||||||
|
// (4..=6, 0..=5, 1) | (_, 6, 1) => u8::MAX, // green
|
||||||
|
// (7..=9, 0..=5, 2) | (_, 7..=10, 2) => u8::MAX, // blue
|
||||||
|
// _ => u8::MIN,
|
||||||
|
// }
|
||||||
|
// });
|
||||||
|
// assert_eq!(out_u8, expected);
|
||||||
|
// }
|
||||||
48
ndcv-bridge/src/bounding_rect.rs
Normal file
48
ndcv-bridge/src/bounding_rect.rs
Normal file
@@ -0,0 +1,48 @@
|
|||||||
|
//! Calculates the up-right bounding rectangle of a point set or non-zero pixels of gray-scale image.
|
||||||
|
//! The function calculates and returns the minimal up-right bounding rectangle for the specified point set or non-zero pixels of gray-scale image.
|
||||||
|
use crate::{NdAsImage, prelude_::*};
|
||||||
|
pub trait BoundingRect: seal::SealedInternal {
|
||||||
|
fn bounding_rect(&self) -> Result<bounding_box::Aabb2<i32>, NdCvError>;
|
||||||
|
}
|
||||||
|
|
||||||
|
mod seal {
|
||||||
|
pub trait SealedInternal {}
|
||||||
|
impl<T, S: ndarray::Data<Elem = T>> SealedInternal for ndarray::ArrayBase<S, ndarray::Ix2> {}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<S: ndarray::Data<Elem = u8>> BoundingRect for ndarray::ArrayBase<S, ndarray::Ix2> {
|
||||||
|
fn bounding_rect(&self) -> Result<bounding_box::Aabb2<i32>, NdCvError> {
|
||||||
|
let mat = self.as_image_mat()?;
|
||||||
|
let rect = opencv::imgproc::bounding_rect(mat.as_ref()).change_context(NdCvError)?;
|
||||||
|
Ok(bounding_box::Aabb2::from_xywh(
|
||||||
|
rect.x,
|
||||||
|
rect.y,
|
||||||
|
rect.width,
|
||||||
|
rect.height,
|
||||||
|
))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_bounding_rect_empty() {
|
||||||
|
let arr = ndarray::Array2::<u8>::zeros((10, 10));
|
||||||
|
let rect = arr.bounding_rect().unwrap();
|
||||||
|
assert_eq!(rect, bounding_box::Aabb2::from_xywh(0, 0, 0, 0));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_bounding_rect_valued() {
|
||||||
|
let mut arr = ndarray::Array2::<u8>::zeros((10, 10));
|
||||||
|
crate::NdRoiMut::roi_mut(&mut arr, bounding_box::Aabb2::from_xywh(1, 1, 3, 3)).fill(1);
|
||||||
|
let rect = arr.bounding_rect().unwrap();
|
||||||
|
assert_eq!(rect, bounding_box::Aabb2::from_xywh(1, 1, 3, 3));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_bounding_rect_complex() {
|
||||||
|
let mut arr = ndarray::Array2::<u8>::zeros((10, 10));
|
||||||
|
crate::NdRoiMut::roi_mut(&mut arr, bounding_box::Aabb2::from_xywh(1, 3, 3, 3)).fill(1);
|
||||||
|
crate::NdRoiMut::roi_mut(&mut arr, bounding_box::Aabb2::from_xywh(2, 3, 3, 5)).fill(5);
|
||||||
|
let rect = arr.bounding_rect().unwrap();
|
||||||
|
assert_eq!(rect, bounding_box::Aabb2::from_xywh(1, 3, 4, 5));
|
||||||
|
}
|
||||||
4
ndcv-bridge/src/codec.rs
Normal file
4
ndcv-bridge/src/codec.rs
Normal file
@@ -0,0 +1,4 @@
|
|||||||
|
pub mod codecs;
|
||||||
|
pub mod decode;
|
||||||
|
pub mod encode;
|
||||||
|
pub mod error;
|
||||||
218
ndcv-bridge/src/codec/codecs.rs
Normal file
218
ndcv-bridge/src/codec/codecs.rs
Normal file
@@ -0,0 +1,218 @@
|
|||||||
|
use super::decode::Decoder;
|
||||||
|
use super::encode::Encoder;
|
||||||
|
use crate::NdCvError;
|
||||||
|
use crate::conversions::matref::MatRef;
|
||||||
|
use error_stack::*;
|
||||||
|
use img_parts::{
|
||||||
|
Bytes,
|
||||||
|
jpeg::{Jpeg, markers},
|
||||||
|
};
|
||||||
|
use opencv::{
|
||||||
|
core::{Mat, Vector, VectorToVec},
|
||||||
|
imgcodecs::{ImreadModes, ImwriteFlags, imdecode, imencode},
|
||||||
|
};
|
||||||
|
|
||||||
|
#[derive(Debug)]
|
||||||
|
pub enum CvEncoder {
|
||||||
|
Jpeg(CvJpegEncFlags),
|
||||||
|
Tiff(CvTiffEncFlags),
|
||||||
|
}
|
||||||
|
|
||||||
|
pub enum EncKind {
|
||||||
|
Jpeg,
|
||||||
|
Tiff,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl CvEncoder {
|
||||||
|
fn kind(&self) -> EncKind {
|
||||||
|
match self {
|
||||||
|
Self::Jpeg(_) => EncKind::Jpeg,
|
||||||
|
Self::Tiff(_) => EncKind::Tiff,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn extension(&self) -> &'static str {
|
||||||
|
match self {
|
||||||
|
Self::Jpeg(_) => ".jpg",
|
||||||
|
Self::Tiff(_) => ".tiff",
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn to_cv_param_list(&self) -> Vector<i32> {
|
||||||
|
match self {
|
||||||
|
Self::Jpeg(flags) => flags.to_cv_param_list(),
|
||||||
|
Self::Tiff(flags) => flags.to_cv_param_list(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Default, Debug)]
|
||||||
|
pub struct CvJpegEncFlags {
|
||||||
|
quality: Option<usize>,
|
||||||
|
progressive: Option<bool>,
|
||||||
|
optimize: Option<bool>,
|
||||||
|
remove_app0: Option<bool>,
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Default, Debug)]
|
||||||
|
pub struct CvTiffEncFlags {
|
||||||
|
compression: Option<i32>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl CvTiffEncFlags {
|
||||||
|
pub fn new() -> Self {
|
||||||
|
Self::default().with_compression(1)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn with_compression(mut self, compression: i32) -> Self {
|
||||||
|
self.compression = Some(compression);
|
||||||
|
self
|
||||||
|
}
|
||||||
|
|
||||||
|
fn to_cv_param_list(&self) -> Vector<i32> {
|
||||||
|
let iter = [(
|
||||||
|
ImwriteFlags::IMWRITE_TIFF_COMPRESSION as i32,
|
||||||
|
self.compression.map(|i| i as i32),
|
||||||
|
)]
|
||||||
|
.into_iter()
|
||||||
|
.filter_map(|(flag, opt)| opt.map(|o| [flag, o]))
|
||||||
|
.flatten();
|
||||||
|
|
||||||
|
Vector::from_iter(iter)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl CvJpegEncFlags {
|
||||||
|
pub fn new() -> Self {
|
||||||
|
Self::default()
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn with_quality(mut self, quality: usize) -> Self {
|
||||||
|
self.quality = Some(quality);
|
||||||
|
self
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn remove_app0_marker(mut self, val: bool) -> Self {
|
||||||
|
self.remove_app0 = Some(val);
|
||||||
|
self
|
||||||
|
}
|
||||||
|
|
||||||
|
fn to_cv_param_list(&self) -> Vector<i32> {
|
||||||
|
let iter = [
|
||||||
|
(
|
||||||
|
ImwriteFlags::IMWRITE_JPEG_QUALITY as i32,
|
||||||
|
self.quality.map(|i| i as i32),
|
||||||
|
),
|
||||||
|
(
|
||||||
|
ImwriteFlags::IMWRITE_JPEG_PROGRESSIVE as i32,
|
||||||
|
self.progressive.map(|i| i as i32),
|
||||||
|
),
|
||||||
|
(
|
||||||
|
ImwriteFlags::IMWRITE_JPEG_OPTIMIZE as i32,
|
||||||
|
self.optimize.map(|i| i as i32),
|
||||||
|
),
|
||||||
|
]
|
||||||
|
.into_iter()
|
||||||
|
.filter_map(|(flag, opt)| opt.map(|o| [flag, o]))
|
||||||
|
.flatten();
|
||||||
|
|
||||||
|
Vector::from_iter(iter)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Encoder for CvEncoder {
|
||||||
|
type Input<'a>
|
||||||
|
= MatRef<'a>
|
||||||
|
where
|
||||||
|
Self: 'a;
|
||||||
|
|
||||||
|
fn encode(&self, input: Self::Input<'_>) -> Result<Vec<u8>, NdCvError> {
|
||||||
|
let mut buf = Vector::default();
|
||||||
|
|
||||||
|
let params = self.to_cv_param_list();
|
||||||
|
|
||||||
|
imencode(self.extension(), &input.as_ref(), &mut buf, ¶ms).change_context(NdCvError)?;
|
||||||
|
|
||||||
|
match self.kind() {
|
||||||
|
EncKind::Jpeg => {
|
||||||
|
let bytes = Bytes::from(buf.to_vec());
|
||||||
|
let mut jpg = Jpeg::from_bytes(bytes).change_context(NdCvError)?;
|
||||||
|
jpg.remove_segments_by_marker(markers::APP0);
|
||||||
|
let bytes = jpg.encoder().bytes();
|
||||||
|
Ok(bytes.to_vec())
|
||||||
|
}
|
||||||
|
EncKind::Tiff => Ok(buf.to_vec()),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub enum CvDecoder {
|
||||||
|
Jpeg(CvJpegDecFlags),
|
||||||
|
}
|
||||||
|
|
||||||
|
impl CvDecoder {
|
||||||
|
fn to_cv_decode_flag(&self) -> i32 {
|
||||||
|
match self {
|
||||||
|
Self::Jpeg(flags) => flags.to_cv_decode_flag(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Default)]
|
||||||
|
pub enum ColorMode {
|
||||||
|
#[default]
|
||||||
|
Color,
|
||||||
|
GrayScale,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl ColorMode {
|
||||||
|
fn to_cv_decode_flag(&self) -> i32 {
|
||||||
|
match self {
|
||||||
|
Self::Color => ImreadModes::IMREAD_ANYCOLOR as i32,
|
||||||
|
Self::GrayScale => ImreadModes::IMREAD_GRAYSCALE as i32,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Default)]
|
||||||
|
pub struct CvJpegDecFlags {
|
||||||
|
color_mode: ColorMode,
|
||||||
|
ignore_orientation: bool,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl CvJpegDecFlags {
|
||||||
|
pub fn new() -> Self {
|
||||||
|
Self::default()
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn with_color_mode(mut self, color_mode: ColorMode) -> Self {
|
||||||
|
self.color_mode = color_mode;
|
||||||
|
self
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn with_ignore_orientation(mut self, ignore_orientation: bool) -> Self {
|
||||||
|
self.ignore_orientation = ignore_orientation;
|
||||||
|
self
|
||||||
|
}
|
||||||
|
|
||||||
|
fn to_cv_decode_flag(&self) -> i32 {
|
||||||
|
let flag = self.color_mode.to_cv_decode_flag();
|
||||||
|
|
||||||
|
if self.ignore_orientation {
|
||||||
|
flag | ImreadModes::IMREAD_IGNORE_ORIENTATION as i32
|
||||||
|
} else {
|
||||||
|
flag
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Decoder for CvDecoder {
|
||||||
|
type Output = Mat;
|
||||||
|
|
||||||
|
fn decode(&self, input: impl AsRef<[u8]>) -> Result<Self::Output, NdCvError> {
|
||||||
|
let flag = self.to_cv_decode_flag();
|
||||||
|
let out = imdecode(&Vector::from_slice(input.as_ref()), flag).change_context(NdCvError)?;
|
||||||
|
|
||||||
|
Ok(out)
|
||||||
|
}
|
||||||
|
}
|
||||||
61
ndcv-bridge/src/codec/decode.rs
Normal file
61
ndcv-bridge/src/codec/decode.rs
Normal file
@@ -0,0 +1,61 @@
|
|||||||
|
#![deny(warnings)]
|
||||||
|
|
||||||
|
use super::codecs::CvDecoder;
|
||||||
|
use super::error::ErrorReason;
|
||||||
|
use crate::NdCvError;
|
||||||
|
use crate::{NdAsImage, conversions::NdCvConversion};
|
||||||
|
use error_stack::*;
|
||||||
|
use ndarray::Array;
|
||||||
|
use std::path::Path;
|
||||||
|
|
||||||
|
pub trait Decodable<D: Decoder>: Sized {
|
||||||
|
fn decode(buf: impl AsRef<[u8]>, decoder: &D) -> Result<Self, NdCvError> {
|
||||||
|
let output = decoder.decode(buf)?;
|
||||||
|
Self::transform(output)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn read(&self, path: impl AsRef<Path>, decoder: &D) -> Result<Self, NdCvError> {
|
||||||
|
let buf = std::fs::read(path)
|
||||||
|
.map_err(|e| match e.kind() {
|
||||||
|
std::io::ErrorKind::NotFound => {
|
||||||
|
Report::new(e).attach_printable(ErrorReason::ImageWriteFileNotFound)
|
||||||
|
}
|
||||||
|
std::io::ErrorKind::PermissionDenied => {
|
||||||
|
Report::new(e).attach_printable(ErrorReason::ImageWritePermissionDenied)
|
||||||
|
}
|
||||||
|
std::io::ErrorKind::OutOfMemory => {
|
||||||
|
Report::new(e).attach_printable(ErrorReason::OutOfMemory)
|
||||||
|
}
|
||||||
|
std::io::ErrorKind::StorageFull => {
|
||||||
|
Report::new(e).attach_printable(ErrorReason::OutOfStorage)
|
||||||
|
}
|
||||||
|
_ => Report::new(e).attach_printable(ErrorReason::ImageWriteOtherError),
|
||||||
|
})
|
||||||
|
.change_context(NdCvError)?;
|
||||||
|
Self::decode(buf, decoder)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn transform(input: D::Output) -> Result<Self, NdCvError>;
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait Decoder {
|
||||||
|
type Output: Sized;
|
||||||
|
fn decode(&self, buf: impl AsRef<[u8]>) -> Result<Self::Output, NdCvError>;
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: bytemuck::Pod + Copy, D: ndarray::Dimension> Decodable<CvDecoder> for Array<T, D>
|
||||||
|
where
|
||||||
|
Self: NdAsImage<T, D>,
|
||||||
|
{
|
||||||
|
fn transform(input: <CvDecoder as Decoder>::Output) -> Result<Self, NdCvError> {
|
||||||
|
Self::from_mat(input)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn decode_image() {
|
||||||
|
use crate::codec::codecs::*;
|
||||||
|
let img = std::fs::read("/Users/fs0c131y/Projects/face-detector/assets/selfie.jpg").unwrap();
|
||||||
|
let decoder = CvDecoder::Jpeg(CvJpegDecFlags::new().with_ignore_orientation(true));
|
||||||
|
let _out = ndarray::Array3::<u8>::decode(img, &decoder).unwrap();
|
||||||
|
}
|
||||||
56
ndcv-bridge/src/codec/encode.rs
Normal file
56
ndcv-bridge/src/codec/encode.rs
Normal file
@@ -0,0 +1,56 @@
|
|||||||
|
use super::codecs::CvEncoder;
|
||||||
|
use super::error::ErrorReason;
|
||||||
|
use crate::conversions::NdAsImage;
|
||||||
|
use crate::NdCvError;
|
||||||
|
use error_stack::*;
|
||||||
|
use ndarray::ArrayBase;
|
||||||
|
use std::path::Path;
|
||||||
|
|
||||||
|
pub trait Encodable<E: Encoder> {
|
||||||
|
fn encode(&self, encoder: &E) -> Result<Vec<u8>, NdCvError> {
|
||||||
|
let input = self.transform()?;
|
||||||
|
encoder.encode(input)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn write(&self, path: impl AsRef<Path>, encoder: &E) -> Result<(), NdCvError> {
|
||||||
|
let buf = self.encode(encoder)?;
|
||||||
|
|
||||||
|
std::fs::write(path, buf)
|
||||||
|
.map_err(|e| match e.kind() {
|
||||||
|
std::io::ErrorKind::NotFound => {
|
||||||
|
Report::new(e).attach_printable(ErrorReason::ImageWriteFileNotFound)
|
||||||
|
}
|
||||||
|
std::io::ErrorKind::PermissionDenied => {
|
||||||
|
Report::new(e).attach_printable(ErrorReason::ImageWritePermissionDenied)
|
||||||
|
}
|
||||||
|
std::io::ErrorKind::OutOfMemory => {
|
||||||
|
Report::new(e).attach_printable(ErrorReason::OutOfMemory)
|
||||||
|
}
|
||||||
|
std::io::ErrorKind::StorageFull => {
|
||||||
|
Report::new(e).attach_printable(ErrorReason::OutOfStorage)
|
||||||
|
}
|
||||||
|
_ => Report::new(e).attach_printable(ErrorReason::ImageWriteOtherError),
|
||||||
|
})
|
||||||
|
.change_context(NdCvError)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn transform(&self) -> Result<<E as Encoder>::Input<'_>, NdCvError>;
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait Encoder {
|
||||||
|
type Input<'a>
|
||||||
|
where
|
||||||
|
Self: 'a;
|
||||||
|
|
||||||
|
fn encode(&self, input: Self::Input<'_>) -> Result<Vec<u8>, NdCvError>;
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: bytemuck::Pod + Copy, S: ndarray::Data<Elem = T>, D: ndarray::Dimension>
|
||||||
|
Encodable<CvEncoder> for ArrayBase<S, D>
|
||||||
|
where
|
||||||
|
Self: NdAsImage<T, D>,
|
||||||
|
{
|
||||||
|
fn transform(&self) -> Result<<CvEncoder as Encoder>::Input<'_>, NdCvError> {
|
||||||
|
self.as_image_mat()
|
||||||
|
}
|
||||||
|
}
|
||||||
19
ndcv-bridge/src/codec/error.rs
Normal file
19
ndcv-bridge/src/codec/error.rs
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
#[derive(Debug)]
|
||||||
|
pub enum ErrorReason {
|
||||||
|
ImageReadFileNotFound,
|
||||||
|
ImageReadPermissionDenied,
|
||||||
|
ImageReadOtherError,
|
||||||
|
|
||||||
|
ImageWriteFileNotFound,
|
||||||
|
ImageWritePermissionDenied,
|
||||||
|
ImageWriteOtherError,
|
||||||
|
|
||||||
|
OutOfMemory,
|
||||||
|
OutOfStorage,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl std::fmt::Display for ErrorReason {
|
||||||
|
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||||
|
write!(f, "{:?}", self)
|
||||||
|
}
|
||||||
|
}
|
||||||
88
ndcv-bridge/src/color_space.rs
Normal file
88
ndcv-bridge/src/color_space.rs
Normal file
@@ -0,0 +1,88 @@
|
|||||||
|
//! Colorspace conversion functions
|
||||||
|
//! ## Example
|
||||||
|
//! ```rust
|
||||||
|
//! let arr = Array3::<u8>::ones((100, 100, 3));
|
||||||
|
//! let out: Array3<u8> = arr.cvt::<Rgba<u8>, Rgb<u8>>()
|
||||||
|
//! ```
|
||||||
|
use crate::prelude_::*;
|
||||||
|
use ndarray::*;
|
||||||
|
|
||||||
|
pub trait ColorSpace {
|
||||||
|
type Elem: seal::Sealed;
|
||||||
|
type Dim: ndarray::Dimension;
|
||||||
|
const CHANNELS: usize;
|
||||||
|
}
|
||||||
|
|
||||||
|
mod seal {
|
||||||
|
pub trait Sealed: bytemuck::Pod {}
|
||||||
|
// impl<T> Sealed for T {}
|
||||||
|
impl Sealed for u8 {} // 0 to 255
|
||||||
|
impl Sealed for u16 {} // 0 to 65535
|
||||||
|
impl Sealed for f32 {} // 0 to 1
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! define_color_space {
|
||||||
|
($name:ident, $channels:expr, $depth:ty) => {
|
||||||
|
pub struct $name<T> {
|
||||||
|
__phantom: core::marker::PhantomData<T>,
|
||||||
|
}
|
||||||
|
impl<T: seal::Sealed> ColorSpace for $name<T> {
|
||||||
|
type Elem = T;
|
||||||
|
type Dim = $depth;
|
||||||
|
const CHANNELS: usize = $channels;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
define_color_space!(Rgb, 3, Ix3);
|
||||||
|
define_color_space!(Bgr, 3, Ix3);
|
||||||
|
define_color_space!(Rgba, 4, Ix3);
|
||||||
|
|
||||||
|
pub trait NdArray<T, D: ndarray::Dimension> {}
|
||||||
|
impl<T, D: ndarray::Dimension, S: ndarray::Data<Elem = T>> NdArray<S, D> for ArrayBase<S, D> {}
|
||||||
|
|
||||||
|
pub trait ConvertColor<T, U>
|
||||||
|
where
|
||||||
|
T: ColorSpace,
|
||||||
|
U: ColorSpace,
|
||||||
|
Self: NdArray<T::Elem, T::Dim>,
|
||||||
|
{
|
||||||
|
type Output: NdArray<U::Elem, U::Dim>;
|
||||||
|
fn cvt(&self) -> Self::Output;
|
||||||
|
}
|
||||||
|
|
||||||
|
// impl<T: seal::Sealed, S: ndarray::Data<Elem = T>> ConvertColor<Rgb<T>, Bgr<T>> for ArrayBase<S, Ix3>
|
||||||
|
// where
|
||||||
|
// Self: NdArray<T, Ix3>,
|
||||||
|
// {
|
||||||
|
// type Output = ArrayView3<'a, T>;
|
||||||
|
// fn cvt(&self) -> CowArray<T, Ix3> {
|
||||||
|
// self.view().permuted_axes([2, 1, 0]).into()
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
//
|
||||||
|
// impl<T: seal::Sealed, S: ndarray::Data<Elem = T>> ConvertColor<Bgr<T>, Rgb<T>> for ArrayBase<S, Ix3>
|
||||||
|
// where
|
||||||
|
// Self: NdArray<T, Ix3>,
|
||||||
|
// {
|
||||||
|
// type Output = ArrayView3<'a, T>;
|
||||||
|
// fn cvt(&self) -> CowArray<T, Ix3> {
|
||||||
|
// self.view().permuted_axes([2, 1, 0]).into()
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
|
||||||
|
|
||||||
|
// impl<T: seal::Sealed + num::One + num::Zero, S: ndarray::Data<Elem = T>>
|
||||||
|
// ConvertColor<Rgb<T>, Rgba<T>> for ArrayBase<S, Ix3>
|
||||||
|
// {
|
||||||
|
// fn cvt(&self) -> CowArray<T, Ix3> {
|
||||||
|
// let mut out = Array3::<T>::zeros((self.height(), self.width(), 4));
|
||||||
|
// // Zip::from(&mut out).and(self).for_each(|out, &in_| {
|
||||||
|
// // out[0] = in_[0];
|
||||||
|
// // out[1] = in_[1];
|
||||||
|
// // out[2] = in_[2];
|
||||||
|
// // out[3] = T::one();
|
||||||
|
// // });
|
||||||
|
// out.into()
|
||||||
|
// }
|
||||||
|
// }
|
||||||
113
ndcv-bridge/src/connected_components.rs
Normal file
113
ndcv-bridge/src/connected_components.rs
Normal file
@@ -0,0 +1,113 @@
|
|||||||
|
use crate::{NdAsImage, NdAsImageMut, conversions::MatAsNd, prelude_::*};
|
||||||
|
|
||||||
|
pub(crate) mod seal {
|
||||||
|
pub trait ConnectedComponentOutput: Sized + Copy + bytemuck::Pod + num::Zero {
|
||||||
|
fn as_cv_type() -> i32 {
|
||||||
|
crate::type_depth::<Self>()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
impl ConnectedComponentOutput for i32 {}
|
||||||
|
impl ConnectedComponentOutput for u16 {}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait NdCvConnectedComponents<T> {
|
||||||
|
fn connected_components<O: seal::ConnectedComponentOutput>(
|
||||||
|
&self,
|
||||||
|
connectivity: Connectivity,
|
||||||
|
) -> Result<ndarray::Array2<O>, NdCvError>;
|
||||||
|
fn connected_components_with_stats<O: seal::ConnectedComponentOutput>(
|
||||||
|
&self,
|
||||||
|
connectivity: Connectivity,
|
||||||
|
) -> Result<ConnectedComponentStats<O>, NdCvError>;
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]
|
||||||
|
pub enum Connectivity {
|
||||||
|
Four = 4,
|
||||||
|
#[default]
|
||||||
|
Eight = 8,
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct ConnectedComponentStats<O: seal::ConnectedComponentOutput> {
|
||||||
|
pub num_labels: i32,
|
||||||
|
pub labels: ndarray::Array2<O>,
|
||||||
|
pub stats: ndarray::Array2<i32>,
|
||||||
|
pub centroids: ndarray::Array2<f64>,
|
||||||
|
}
|
||||||
|
|
||||||
|
// use crate::conversions::NdCvConversionRef;
|
||||||
|
impl<T: bytemuck::Pod, S: ndarray::Data<Elem = T>> NdCvConnectedComponents<T>
|
||||||
|
for ndarray::ArrayBase<S, ndarray::Ix2>
|
||||||
|
where
|
||||||
|
ndarray::Array2<T>: NdAsImage<T, ndarray::Ix2>,
|
||||||
|
{
|
||||||
|
fn connected_components<O: seal::ConnectedComponentOutput>(
|
||||||
|
&self,
|
||||||
|
connectivity: Connectivity,
|
||||||
|
) -> Result<ndarray::Array2<O>, NdCvError> {
|
||||||
|
let mat = self.as_image_mat()?;
|
||||||
|
let mut labels = ndarray::Array2::<O>::zeros(self.dim());
|
||||||
|
let mut cv_labels = labels.as_image_mat_mut()?;
|
||||||
|
opencv::imgproc::connected_components(
|
||||||
|
mat.as_ref(),
|
||||||
|
cv_labels.as_mut(),
|
||||||
|
connectivity as i32,
|
||||||
|
O::as_cv_type(),
|
||||||
|
)
|
||||||
|
.change_context(NdCvError)?;
|
||||||
|
Ok(labels)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn connected_components_with_stats<O: seal::ConnectedComponentOutput>(
|
||||||
|
&self,
|
||||||
|
connectivity: Connectivity,
|
||||||
|
) -> Result<ConnectedComponentStats<O>, NdCvError> {
|
||||||
|
let mut labels = ndarray::Array2::<O>::zeros(self.dim());
|
||||||
|
let mut stats = opencv::core::Mat::default();
|
||||||
|
let mut centroids = opencv::core::Mat::default();
|
||||||
|
let num_labels = opencv::imgproc::connected_components_with_stats(
|
||||||
|
self.as_image_mat()?.as_ref(),
|
||||||
|
labels.as_image_mat_mut()?.as_mut(),
|
||||||
|
&mut stats,
|
||||||
|
&mut centroids,
|
||||||
|
connectivity as i32,
|
||||||
|
O::as_cv_type(),
|
||||||
|
)
|
||||||
|
.change_context(NdCvError)?;
|
||||||
|
let stats = stats.as_ndarray()?.to_owned();
|
||||||
|
let centroids = centroids.as_ndarray()?.to_owned();
|
||||||
|
Ok(ConnectedComponentStats {
|
||||||
|
labels,
|
||||||
|
stats,
|
||||||
|
centroids,
|
||||||
|
num_labels,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// #[test]
|
||||||
|
// fn test_connected_components() {
|
||||||
|
// use opencv::core::MatTrait as _;
|
||||||
|
// let mat = opencv::core::Mat::new_nd_with_default(&[10, 10], opencv::core::CV_8UC1, 0.into())
|
||||||
|
// .expect("failed");
|
||||||
|
// let roi1 = opencv::core::Rect::new(2, 2, 2, 2);
|
||||||
|
// let roi2 = opencv::core::Rect::new(6, 6, 3, 3);
|
||||||
|
// let mut mat1 = opencv::core::Mat::roi(&mat, roi1).expect("failed");
|
||||||
|
// mat1.set_scalar(1.into()).expect("failed");
|
||||||
|
// let mut mat2 = opencv::core::Mat::roi(&mat, roi2).expect("failed");
|
||||||
|
// mat2.set_scalar(1.into()).expect("failed");
|
||||||
|
|
||||||
|
// let array2: ndarray::ArrayView2<u8> = mat.as_ndarray().expect("failed");
|
||||||
|
// let output = array2
|
||||||
|
// .connected_components::<u16>(Connectivity::Four)
|
||||||
|
// .expect("failed");
|
||||||
|
// let expected = {
|
||||||
|
// let mut expected = ndarray::Array2::zeros((10, 10));
|
||||||
|
// expected.slice_mut(ndarray::s![2..4, 2..4]).fill(1);
|
||||||
|
// expected.slice_mut(ndarray::s![6..9, 6..9]).fill(2);
|
||||||
|
// expected
|
||||||
|
// };
|
||||||
|
|
||||||
|
// assert_eq!(output, expected);
|
||||||
|
// }
|
||||||
270
ndcv-bridge/src/contours.rs
Normal file
270
ndcv-bridge/src/contours.rs
Normal file
@@ -0,0 +1,270 @@
|
|||||||
|
//! <https://docs.rs/opencv/latest/opencv/imgproc/fn.find_contours.html>
|
||||||
|
|
||||||
|
#![deny(warnings)]
|
||||||
|
|
||||||
|
use crate::conversions::*;
|
||||||
|
use crate::prelude_::*;
|
||||||
|
use nalgebra::Point2;
|
||||||
|
use ndarray::*;
|
||||||
|
|
||||||
|
#[repr(C)]
|
||||||
|
#[derive(Default, Debug, Copy, Clone, PartialEq, Eq)]
|
||||||
|
pub enum ContourRetrievalMode {
|
||||||
|
#[default]
|
||||||
|
External = 0, // RETR_EXTERNAL
|
||||||
|
List = 1, // RETR_LIST
|
||||||
|
CComp = 2, // RETR_CCOMP
|
||||||
|
Tree = 3, // RETR_TREE
|
||||||
|
FloodFill = 4, // RETR_FLOODFILL
|
||||||
|
}
|
||||||
|
|
||||||
|
#[repr(C)]
|
||||||
|
#[derive(Default, Debug, Copy, Clone, PartialEq, Eq)]
|
||||||
|
pub enum ContourApproximationMethod {
|
||||||
|
#[default]
|
||||||
|
None = 1, // CHAIN_APPROX_NONE
|
||||||
|
Simple = 2, // CHAIN_APPROX_SIMPLE
|
||||||
|
Tc89L1 = 3, // CHAIN_APPROX_TC89_L1
|
||||||
|
Tc89Kcos = 4, // CHAIN_APPROX_TC89_KCOS
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct ContourHierarchy {
|
||||||
|
pub next: i32,
|
||||||
|
pub previous: i32,
|
||||||
|
pub first_child: i32,
|
||||||
|
pub parent: i32,
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct ContourResult {
|
||||||
|
pub contours: Vec<Vec<Point2<i32>>>,
|
||||||
|
pub hierarchy: Vec<ContourHierarchy>,
|
||||||
|
}
|
||||||
|
|
||||||
|
mod seal {
|
||||||
|
pub trait Sealed {}
|
||||||
|
impl Sealed for u8 {}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait NdCvFindContours<T: bytemuck::Pod + seal::Sealed>:
|
||||||
|
crate::image::NdImage + crate::conversions::NdAsImage<T, ndarray::Ix2>
|
||||||
|
{
|
||||||
|
fn find_contours(
|
||||||
|
&self,
|
||||||
|
mode: ContourRetrievalMode,
|
||||||
|
method: ContourApproximationMethod,
|
||||||
|
) -> Result<Vec<Vec<Point2<i32>>>, NdCvError>;
|
||||||
|
|
||||||
|
fn find_contours_with_hierarchy(
|
||||||
|
&self,
|
||||||
|
mode: ContourRetrievalMode,
|
||||||
|
method: ContourApproximationMethod,
|
||||||
|
) -> Result<ContourResult, NdCvError>;
|
||||||
|
|
||||||
|
fn find_contours_def(&self) -> Result<Vec<Vec<Point2<i32>>>, NdCvError> {
|
||||||
|
self.find_contours(
|
||||||
|
ContourRetrievalMode::External,
|
||||||
|
ContourApproximationMethod::Simple,
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn find_contours_with_hierarchy_def(&self) -> Result<ContourResult, NdCvError> {
|
||||||
|
self.find_contours_with_hierarchy(
|
||||||
|
ContourRetrievalMode::External,
|
||||||
|
ContourApproximationMethod::Simple,
|
||||||
|
)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait NdCvContourArea<T: bytemuck::Pod> {
|
||||||
|
fn contours_area(&self, oriented: bool) -> Result<f64, NdCvError>;
|
||||||
|
|
||||||
|
fn contours_area_def(&self) -> Result<f64, NdCvError> {
|
||||||
|
self.contours_area(false)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: ndarray::RawData + ndarray::Data<Elem = u8>> NdCvFindContours<u8> for ArrayBase<T, Ix2> {
|
||||||
|
fn find_contours(
|
||||||
|
&self,
|
||||||
|
mode: ContourRetrievalMode,
|
||||||
|
method: ContourApproximationMethod,
|
||||||
|
) -> Result<Vec<Vec<Point2<i32>>>, NdCvError> {
|
||||||
|
let cv_self = self.as_image_mat()?;
|
||||||
|
let mut contours = opencv::core::Vector::<opencv::core::Vector<opencv::core::Point>>::new();
|
||||||
|
|
||||||
|
opencv::imgproc::find_contours(
|
||||||
|
&*cv_self,
|
||||||
|
&mut contours,
|
||||||
|
mode as i32,
|
||||||
|
method as i32,
|
||||||
|
opencv::core::Point::new(0, 0),
|
||||||
|
)
|
||||||
|
.change_context(NdCvError)
|
||||||
|
.attach_printable("Failed to find contours")?;
|
||||||
|
let mut result: Vec<Vec<Point2<i32>>> = Vec::new();
|
||||||
|
|
||||||
|
for i in 0..contours.len() {
|
||||||
|
let contour = contours.get(i).change_context(NdCvError)?;
|
||||||
|
let points: Vec<Point2<i32>> =
|
||||||
|
contour.iter().map(|pt| Point2::new(pt.x, pt.y)).collect();
|
||||||
|
result.push(points);
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(result)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn find_contours_with_hierarchy(
|
||||||
|
&self,
|
||||||
|
mode: ContourRetrievalMode,
|
||||||
|
method: ContourApproximationMethod,
|
||||||
|
) -> Result<ContourResult, NdCvError> {
|
||||||
|
let cv_self = self.as_image_mat()?;
|
||||||
|
let mut contours = opencv::core::Vector::<opencv::core::Vector<opencv::core::Point>>::new();
|
||||||
|
let mut hierarchy = opencv::core::Vector::<opencv::core::Vec4i>::new();
|
||||||
|
|
||||||
|
opencv::imgproc::find_contours_with_hierarchy(
|
||||||
|
&*cv_self,
|
||||||
|
&mut contours,
|
||||||
|
&mut hierarchy,
|
||||||
|
mode as i32,
|
||||||
|
method as i32,
|
||||||
|
opencv::core::Point::new(0, 0),
|
||||||
|
)
|
||||||
|
.change_context(NdCvError)
|
||||||
|
.attach_printable("Failed to find contours with hierarchy")?;
|
||||||
|
let mut contour_list: Vec<Vec<Point2<i32>>> = Vec::new();
|
||||||
|
|
||||||
|
for i in 0..contours.len() {
|
||||||
|
let contour = contours.get(i).change_context(NdCvError)?;
|
||||||
|
let points: Vec<Point2<i32>> =
|
||||||
|
contour.iter().map(|pt| Point2::new(pt.x, pt.y)).collect();
|
||||||
|
contour_list.push(points);
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut hierarchy_list = Vec::new();
|
||||||
|
for i in 0..hierarchy.len() {
|
||||||
|
let h = hierarchy.get(i).change_context(NdCvError)?;
|
||||||
|
hierarchy_list.push(ContourHierarchy {
|
||||||
|
next: h[0],
|
||||||
|
previous: h[1],
|
||||||
|
first_child: h[2],
|
||||||
|
parent: h[3],
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(ContourResult {
|
||||||
|
contours: contour_list,
|
||||||
|
hierarchy: hierarchy_list,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T> NdCvContourArea<T> for Vec<Point2<T>>
|
||||||
|
where
|
||||||
|
T: bytemuck::Pod + num::traits::AsPrimitive<i32> + std::cmp::PartialEq + std::fmt::Debug + Copy,
|
||||||
|
{
|
||||||
|
fn contours_area(&self, oriented: bool) -> Result<f64, NdCvError> {
|
||||||
|
if self.is_empty() {
|
||||||
|
return Ok(0.0);
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut cv_contour: opencv::core::Vector<opencv::core::Point> = opencv::core::Vector::new();
|
||||||
|
self.iter().for_each(|point| {
|
||||||
|
cv_contour.push(opencv::core::Point::new(
|
||||||
|
point.coords[0].as_(),
|
||||||
|
point.coords[1].as_(),
|
||||||
|
));
|
||||||
|
});
|
||||||
|
|
||||||
|
opencv::imgproc::contour_area(&cv_contour, oriented)
|
||||||
|
.change_context(NdCvError)
|
||||||
|
.attach_printable("Failed to calculate contour area")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
use ndarray::Array2;
|
||||||
|
|
||||||
|
fn simple_binary_rect_image() -> Array2<u8> {
|
||||||
|
let mut img = Array2::<u8>::zeros((10, 10));
|
||||||
|
for i in 2..8 {
|
||||||
|
for j in 3..7 {
|
||||||
|
img[(i, j)] = 255;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
img
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_find_contours_external_simple() {
|
||||||
|
let img = simple_binary_rect_image();
|
||||||
|
let contours = img
|
||||||
|
.find_contours(
|
||||||
|
ContourRetrievalMode::External,
|
||||||
|
ContourApproximationMethod::Simple,
|
||||||
|
)
|
||||||
|
.expect("Failed to find contours");
|
||||||
|
assert_eq!(contours.len(), 1);
|
||||||
|
assert!(contours[0].len() >= 4);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_find_contours_with_hierarchy() {
|
||||||
|
let img = simple_binary_rect_image();
|
||||||
|
let res = img
|
||||||
|
.find_contours_with_hierarchy(
|
||||||
|
ContourRetrievalMode::External,
|
||||||
|
ContourApproximationMethod::Simple,
|
||||||
|
)
|
||||||
|
.expect("Failed to find contours with hierarchy");
|
||||||
|
assert_eq!(res.contours.len(), 1);
|
||||||
|
assert_eq!(res.hierarchy.len(), 1);
|
||||||
|
|
||||||
|
let h = &res.hierarchy[0];
|
||||||
|
assert_eq!(h.parent, -1);
|
||||||
|
assert_eq!(h.first_child, -1);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_default_methods() {
|
||||||
|
let img = simple_binary_rect_image();
|
||||||
|
let contours = img.find_contours_def().unwrap();
|
||||||
|
let res = img.find_contours_with_hierarchy_def().unwrap();
|
||||||
|
assert_eq!(contours.len(), 1);
|
||||||
|
assert_eq!(res.contours.len(), 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_contour_area_calculation() {
|
||||||
|
let img = simple_binary_rect_image();
|
||||||
|
let contours = img.find_contours_def().unwrap();
|
||||||
|
let expected_area = 15.;
|
||||||
|
let area = contours[0].contours_area_def().unwrap();
|
||||||
|
assert!(
|
||||||
|
(area - expected_area).abs() < 1.0,
|
||||||
|
"Area mismatch: got {area}, expected {expected_area}",
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_empty_input_returns_no_contours() {
|
||||||
|
let img = Array2::<u8>::zeros((10, 10));
|
||||||
|
let contours = img.find_contours_def().unwrap();
|
||||||
|
assert!(contours.is_empty());
|
||||||
|
|
||||||
|
let res = img.find_contours_with_hierarchy_def().unwrap();
|
||||||
|
assert!(res.contours.is_empty());
|
||||||
|
assert!(res.hierarchy.is_empty());
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_contour_area_empty_contour() {
|
||||||
|
let contour: Vec<Point2<i32>> = vec![];
|
||||||
|
let area = contour.contours_area_def().unwrap();
|
||||||
|
assert_eq!(area, 0.0);
|
||||||
|
}
|
||||||
|
}
|
||||||
337
ndcv-bridge/src/conversions.rs
Normal file
337
ndcv-bridge/src/conversions.rs
Normal file
@@ -0,0 +1,337 @@
|
|||||||
|
//! Mat <--> ndarray conversion traits
|
||||||
|
//!
|
||||||
|
//! Conversion Table
|
||||||
|
//!
|
||||||
|
//! | ndarray | Mat |
|
||||||
|
//! |--------- |----- |
|
||||||
|
//! | Array<T, Ix1> | Mat(ndims = 1, channels = 1) |
|
||||||
|
//! | Array<T, Ix2> | Mat(ndims = 2, channels = 1) |
|
||||||
|
//! | Array<T, Ix2> | Mat(ndims = 1, channels = X) |
|
||||||
|
//! | Array<T, Ix3> | Mat(ndims = 3, channels = 1) |
|
||||||
|
//! | Array<T, Ix3> | Mat(ndims = 2, channels = X) |
|
||||||
|
//! | Array<T, Ix4> | Mat(ndims = 4, channels = 1) |
|
||||||
|
//! | Array<T, Ix4> | Mat(ndims = 3, channels = X) |
|
||||||
|
//! | Array<T, Ix5> | Mat(ndims = 5, channels = 1) |
|
||||||
|
//! | Array<T, Ix5> | Mat(ndims = 4, channels = X) |
|
||||||
|
//! | Array<T, Ix6> | Mat(ndims = 6, channels = 1) |
|
||||||
|
//! | Array<T, Ix6> | Mat(ndims = 5, channels = X) |
|
||||||
|
//!
|
||||||
|
//! // X is the last dimension
|
||||||
|
use crate::NdCvError;
|
||||||
|
use crate::type_depth;
|
||||||
|
use error_stack::*;
|
||||||
|
use ndarray::{Ix2, Ix3};
|
||||||
|
use opencv::core::MatTraitConst;
|
||||||
|
mod impls;
|
||||||
|
pub(crate) mod matref;
|
||||||
|
use matref::{MatRef, MatRefMut};
|
||||||
|
|
||||||
|
pub(crate) mod seal {
|
||||||
|
pub trait SealedInternal {}
|
||||||
|
impl<T, S: ndarray::Data<Elem = T>, D> SealedInternal for ndarray::ArrayBase<S, D> {}
|
||||||
|
// impl<T, S: ndarray::DataMut<Elem = T>, D> SealedInternal for ndarray::ArrayBase<S, D> {}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait NdCvConversion<T: bytemuck::Pod + Copy, D: ndarray::Dimension>:
|
||||||
|
seal::SealedInternal + Sized
|
||||||
|
{
|
||||||
|
fn to_mat(&self) -> Result<opencv::core::Mat, NdCvError>;
|
||||||
|
fn from_mat(
|
||||||
|
mat: opencv::core::Mat,
|
||||||
|
) -> Result<ndarray::ArrayBase<ndarray::OwnedRepr<T>, D>, NdCvError>;
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: bytemuck::Pod + Copy, S: ndarray::Data<Elem = T>, D: ndarray::Dimension>
|
||||||
|
NdCvConversion<T, D> for ndarray::ArrayBase<S, D>
|
||||||
|
where
|
||||||
|
Self: NdAsImage<T, D>,
|
||||||
|
{
|
||||||
|
fn to_mat(&self) -> Result<opencv::core::Mat, NdCvError> {
|
||||||
|
Ok(self.as_image_mat()?.mat.clone())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn from_mat(
|
||||||
|
mat: opencv::core::Mat,
|
||||||
|
) -> Result<ndarray::ArrayBase<ndarray::OwnedRepr<T>, D>, NdCvError> {
|
||||||
|
let ndarray = unsafe { impls::mat_to_ndarray::<T, D>(&mat) }.change_context(NdCvError)?;
|
||||||
|
Ok(ndarray.to_owned())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait MatAsNd {
|
||||||
|
fn as_ndarray<T: bytemuck::Pod, D: ndarray::Dimension>(
|
||||||
|
&self,
|
||||||
|
) -> Result<ndarray::ArrayView<T, D>, NdCvError>;
|
||||||
|
}
|
||||||
|
|
||||||
|
impl MatAsNd for opencv::core::Mat {
|
||||||
|
fn as_ndarray<T: bytemuck::Pod, D: ndarray::Dimension>(
|
||||||
|
&self,
|
||||||
|
) -> Result<ndarray::ArrayView<T, D>, NdCvError> {
|
||||||
|
unsafe { impls::mat_to_ndarray::<T, D>(self) }.change_context(NdCvError)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait NdAsMat<T: bytemuck::Pod + Copy, D: ndarray::Dimension> {
|
||||||
|
fn as_single_channel_mat(&self) -> Result<MatRef, NdCvError>;
|
||||||
|
fn as_multi_channel_mat(&self) -> Result<MatRef, NdCvError>;
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait NdAsMatMut<T: bytemuck::Pod + Copy, D: ndarray::Dimension>: NdAsMat<T, D> {
|
||||||
|
fn as_single_channel_mat_mut(&mut self) -> Result<MatRefMut, NdCvError>;
|
||||||
|
fn as_multi_channel_mat_mut(&mut self) -> Result<MatRefMut, NdCvError>;
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: bytemuck::Pod, S: ndarray::Data<Elem = T>, D: ndarray::Dimension> NdAsMat<T, D>
|
||||||
|
for ndarray::ArrayBase<S, D>
|
||||||
|
{
|
||||||
|
fn as_single_channel_mat(&self) -> Result<MatRef, NdCvError> {
|
||||||
|
let mat = unsafe { impls::ndarray_to_mat_regular(self) }.change_context(NdCvError)?;
|
||||||
|
Ok(MatRef::new(mat))
|
||||||
|
}
|
||||||
|
fn as_multi_channel_mat(&self) -> Result<MatRef, NdCvError> {
|
||||||
|
let mat = unsafe { impls::ndarray_to_mat_consolidated(self) }.change_context(NdCvError)?;
|
||||||
|
Ok(MatRef::new(mat))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: bytemuck::Pod, S: ndarray::DataMut<Elem = T>, D: ndarray::Dimension> NdAsMatMut<T, D>
|
||||||
|
for ndarray::ArrayBase<S, D>
|
||||||
|
{
|
||||||
|
fn as_single_channel_mat_mut(&mut self) -> Result<MatRefMut, NdCvError> {
|
||||||
|
let mat = unsafe { impls::ndarray_to_mat_regular(self) }.change_context(NdCvError)?;
|
||||||
|
Ok(MatRefMut::new(mat))
|
||||||
|
}
|
||||||
|
|
||||||
|
fn as_multi_channel_mat_mut(&mut self) -> Result<MatRefMut, NdCvError> {
|
||||||
|
let mat = unsafe { impls::ndarray_to_mat_consolidated(self) }.change_context(NdCvError)?;
|
||||||
|
Ok(MatRefMut::new(mat))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait NdAsImage<T: bytemuck::Pod, D: ndarray::Dimension> {
|
||||||
|
fn as_image_mat(&self) -> Result<MatRef, NdCvError>;
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait NdAsImageMut<T: bytemuck::Pod, D: ndarray::Dimension> {
|
||||||
|
fn as_image_mat_mut(&mut self) -> Result<MatRefMut, NdCvError>;
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T, S> NdAsImage<T, Ix2> for ndarray::ArrayBase<S, Ix2>
|
||||||
|
where
|
||||||
|
T: bytemuck::Pod + Copy,
|
||||||
|
S: ndarray::Data<Elem = T>,
|
||||||
|
{
|
||||||
|
fn as_image_mat(&self) -> Result<MatRef, NdCvError> {
|
||||||
|
self.as_single_channel_mat()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T, S> NdAsImageMut<T, Ix2> for ndarray::ArrayBase<S, Ix2>
|
||||||
|
where
|
||||||
|
T: bytemuck::Pod + Copy,
|
||||||
|
S: ndarray::DataMut<Elem = T>,
|
||||||
|
{
|
||||||
|
fn as_image_mat_mut(&mut self) -> Result<MatRefMut, NdCvError> {
|
||||||
|
self.as_single_channel_mat_mut()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T, S> NdAsImage<T, Ix3> for ndarray::ArrayBase<S, Ix3>
|
||||||
|
where
|
||||||
|
T: bytemuck::Pod + Copy,
|
||||||
|
S: ndarray::Data<Elem = T>,
|
||||||
|
{
|
||||||
|
fn as_image_mat(&self) -> Result<MatRef, NdCvError> {
|
||||||
|
self.as_multi_channel_mat()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T, S> NdAsImageMut<T, Ix3> for ndarray::ArrayBase<S, Ix3>
|
||||||
|
where
|
||||||
|
T: bytemuck::Pod + Copy,
|
||||||
|
S: ndarray::DataMut<Elem = T>,
|
||||||
|
{
|
||||||
|
fn as_image_mat_mut(&mut self) -> Result<MatRefMut, NdCvError> {
|
||||||
|
self.as_multi_channel_mat_mut()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// #[test]
|
||||||
|
// fn test_1d_mat_to_ndarray() {
|
||||||
|
// let mat = opencv::core::Mat::new_nd_with_default(
|
||||||
|
// &[10],
|
||||||
|
// opencv::core::CV_MAKE_TYPE(opencv::core::CV_8U, 1),
|
||||||
|
// 200.into(),
|
||||||
|
// )
|
||||||
|
// .expect("failed");
|
||||||
|
// let array: ndarray::ArrayView1<u8> = mat.as_ndarray().expect("failed");
|
||||||
|
// array.into_iter().for_each(|&x| assert_eq!(x, 200));
|
||||||
|
// }
|
||||||
|
|
||||||
|
// #[test]
|
||||||
|
// fn test_2d_mat_to_ndarray() {
|
||||||
|
// let mat = opencv::core::Mat::new_nd_with_default(
|
||||||
|
// &[10],
|
||||||
|
// opencv::core::CV_16SC3,
|
||||||
|
// (200, 200, 200).into(),
|
||||||
|
// )
|
||||||
|
// .expect("failed");
|
||||||
|
// let array2: ndarray::ArrayView2<i16> = mat.as_ndarray().expect("failed");
|
||||||
|
// assert_eq!(array2.shape(), [10, 3]);
|
||||||
|
// array2.into_iter().for_each(|&x| {
|
||||||
|
// assert_eq!(x, 200);
|
||||||
|
// });
|
||||||
|
// }
|
||||||
|
|
||||||
|
// #[test]
|
||||||
|
// fn test_3d_mat_to_ndarray() {
|
||||||
|
// let mat = opencv::core::Mat::new_nd_with_default(
|
||||||
|
// &[20, 30],
|
||||||
|
// opencv::core::CV_32FC3,
|
||||||
|
// (200, 200, 200).into(),
|
||||||
|
// )
|
||||||
|
// .expect("failed");
|
||||||
|
// let array2: ndarray::ArrayView3<f32> = mat.as_ndarray().expect("failed");
|
||||||
|
// array2.into_iter().for_each(|&x| {
|
||||||
|
// assert_eq!(x, 200f32);
|
||||||
|
// });
|
||||||
|
// }
|
||||||
|
|
||||||
|
// #[test]
|
||||||
|
// fn test_mat_to_dyn_ndarray() {
|
||||||
|
// let mat = opencv::core::Mat::new_nd_with_default(&[10], opencv::core::CV_8UC1, 200.into())
|
||||||
|
// .expect("failed");
|
||||||
|
// let array2: ndarray::ArrayViewD<u8> = mat.as_ndarray().expect("failed");
|
||||||
|
// array2.into_iter().for_each(|&x| assert_eq!(x, 200));
|
||||||
|
// }
|
||||||
|
|
||||||
|
// #[test]
|
||||||
|
// fn test_3d_mat_to_ndarray_4k() {
|
||||||
|
// let mat = opencv::core::Mat::new_nd_with_default(
|
||||||
|
// &[4096, 4096],
|
||||||
|
// opencv::core::CV_8UC3,
|
||||||
|
// (255, 0, 255).into(),
|
||||||
|
// )
|
||||||
|
// .expect("failed");
|
||||||
|
// let array2: ndarray::ArrayView3<u8> = (mat).as_ndarray().expect("failed");
|
||||||
|
// array2.exact_chunks((1, 1, 3)).into_iter().for_each(|x| {
|
||||||
|
// assert_eq!(x[(0, 0, 0)], 255);
|
||||||
|
// assert_eq!(x[(0, 0, 1)], 0);
|
||||||
|
// assert_eq!(x[(0, 0, 2)], 255);
|
||||||
|
// });
|
||||||
|
// }
|
||||||
|
|
||||||
|
// // #[test]
|
||||||
|
// // fn test_3d_mat_to_ndarray_8k() {
|
||||||
|
// // let mat = opencv::core::Mat::new_nd_with_default(
|
||||||
|
// // &[8192, 8192],
|
||||||
|
// // opencv::core::CV_8UC3,
|
||||||
|
// // (255, 0, 255).into(),
|
||||||
|
// // )
|
||||||
|
// // .expect("failed");
|
||||||
|
// // let array2 = ndarray::Array3::<u8>::from_mat(mat).expect("failed");
|
||||||
|
// // array2.exact_chunks((1, 1, 3)).into_iter().for_each(|x| {
|
||||||
|
// // assert_eq!(x[(0, 0, 0)], 255);
|
||||||
|
// // assert_eq!(x[(0, 0, 1)], 0);
|
||||||
|
// // assert_eq!(x[(0, 0, 2)], 255);
|
||||||
|
// // });
|
||||||
|
// // }
|
||||||
|
|
||||||
|
// #[test]
|
||||||
|
// pub fn test_mat_to_nd_default_strides() {
|
||||||
|
// let mat = opencv::core::Mat::new_rows_cols_with_default(
|
||||||
|
// 10,
|
||||||
|
// 10,
|
||||||
|
// opencv::core::CV_8UC3,
|
||||||
|
// opencv::core::VecN([10f64, 0.0, 0.0, 0.0]),
|
||||||
|
// )
|
||||||
|
// .expect("failed");
|
||||||
|
// let array = unsafe { impls::mat_to_ndarray::<u8, Ix3>(&mat) }.expect("failed");
|
||||||
|
// assert_eq!(array.shape(), [10, 10, 3]);
|
||||||
|
// assert_eq!(array.strides(), [30, 3, 1]);
|
||||||
|
// assert_eq!(array[(0, 0, 0)], 10);
|
||||||
|
// }
|
||||||
|
|
||||||
|
// #[test]
|
||||||
|
// pub fn test_mat_to_nd_custom_strides() {
|
||||||
|
// let mat = opencv::core::Mat::new_rows_cols_with_default(
|
||||||
|
// 10,
|
||||||
|
// 10,
|
||||||
|
// opencv::core::CV_8UC3,
|
||||||
|
// opencv::core::VecN([10f64, 0.0, 0.0, 0.0]),
|
||||||
|
// )
|
||||||
|
// .unwrap();
|
||||||
|
// let mat_roi = opencv::core::Mat::roi(&mat, opencv::core::Rect::new(3, 2, 3, 5))
|
||||||
|
// .expect("failed to get roi");
|
||||||
|
// let array = unsafe { impls::mat_to_ndarray::<u8, Ix3>(&mat_roi) }.expect("failed");
|
||||||
|
// assert_eq!(array.shape(), [5, 3, 3]);
|
||||||
|
// assert_eq!(array.strides(), [30, 3, 1]);
|
||||||
|
// assert_eq!(array[(0, 0, 0)], 10);
|
||||||
|
// }
|
||||||
|
|
||||||
|
// #[test]
|
||||||
|
// pub fn test_non_continuous_3d() {
|
||||||
|
// let array = ndarray::Array3::<f32>::from_shape_fn((10, 10, 4), |(i, j, k)| {
|
||||||
|
// ((i + 1) * (j + 1) * (k + 1)) as f32
|
||||||
|
// });
|
||||||
|
// let slice = array.slice(ndarray::s![3..7, 3..7, 0..4]);
|
||||||
|
// let mat = unsafe { impls::ndarray_to_mat_consolidated(&slice) }.unwrap();
|
||||||
|
// let arr = unsafe { impls::mat_to_ndarray::<f32, Ix3>(&mat).unwrap() };
|
||||||
|
// assert!(slice == arr);
|
||||||
|
// }
|
||||||
|
|
||||||
|
// #[test]
|
||||||
|
// pub fn test_5d_array() {
|
||||||
|
// let array = ndarray::Array5::<f32>::ones((1, 2, 3, 4, 5));
|
||||||
|
// let mat = unsafe { impls::ndarray_to_mat_consolidated(&array) }.unwrap();
|
||||||
|
// let arr = unsafe { impls::mat_to_ndarray::<f32, ndarray::Ix5>(&mat).unwrap() };
|
||||||
|
// assert_eq!(array, arr);
|
||||||
|
// }
|
||||||
|
|
||||||
|
// #[test]
|
||||||
|
// pub fn test_3d_array() {
|
||||||
|
// let array = ndarray::Array3::<f32>::ones((23, 31, 33));
|
||||||
|
// let mat = unsafe { impls::ndarray_to_mat_consolidated(&array) }.unwrap();
|
||||||
|
// let arr = unsafe { impls::mat_to_ndarray::<f32, ndarray::Ix3>(&mat).unwrap() };
|
||||||
|
// assert_eq!(array, arr);
|
||||||
|
// }
|
||||||
|
|
||||||
|
// #[test]
|
||||||
|
// pub fn test_2d_array() {
|
||||||
|
// let array = ndarray::Array2::<f32>::ones((23, 31));
|
||||||
|
// let mat = unsafe { impls::ndarray_to_mat_consolidated(&array) }.unwrap();
|
||||||
|
// let arr = unsafe { impls::mat_to_ndarray::<f32, ndarray::Ix2>(&mat).unwrap() };
|
||||||
|
// assert_eq!(array, arr);
|
||||||
|
// }
|
||||||
|
|
||||||
|
// #[test]
|
||||||
|
// #[should_panic]
|
||||||
|
// pub fn test_1d_array_consolidated() {
|
||||||
|
// let array = ndarray::Array1::<f32>::ones(23);
|
||||||
|
// let mat = unsafe { impls::ndarray_to_mat_consolidated(&array) }.unwrap();
|
||||||
|
// let arr = unsafe { impls::mat_to_ndarray::<f32, ndarray::Ix1>(&mat).unwrap() };
|
||||||
|
// assert_eq!(array, arr);
|
||||||
|
// }
|
||||||
|
|
||||||
|
// #[test]
|
||||||
|
// pub fn test_1d_array_regular() {
|
||||||
|
// let array = ndarray::Array1::<f32>::ones(23);
|
||||||
|
// let mat = unsafe { impls::ndarray_to_mat_regular(&array) }.unwrap();
|
||||||
|
// let arr = unsafe { impls::mat_to_ndarray::<f32, ndarray::Ix1>(&mat).unwrap() };
|
||||||
|
// assert_eq!(array, arr);
|
||||||
|
// }
|
||||||
|
|
||||||
|
// #[test]
|
||||||
|
// pub fn test_2d_array_regular() {
|
||||||
|
// let array = ndarray::Array2::<f32>::ones((23, 31));
|
||||||
|
// let mat = unsafe { impls::ndarray_to_mat_regular(&array) }.unwrap();
|
||||||
|
// let arr = unsafe { impls::mat_to_ndarray::<f32, ndarray::Ix2>(&mat).unwrap() };
|
||||||
|
// assert_eq!(array, arr);
|
||||||
|
// }
|
||||||
|
|
||||||
|
// #[test]
|
||||||
|
// pub fn test_ndcv_1024_1024_to_mat() {
|
||||||
|
// let array = ndarray::Array2::<f32>::ones((1024, 1024));
|
||||||
|
// let _mat = array.to_mat().unwrap();
|
||||||
|
// }
|
||||||
168
ndcv-bridge/src/conversions/impls.rs
Normal file
168
ndcv-bridge/src/conversions/impls.rs
Normal file
@@ -0,0 +1,168 @@
|
|||||||
|
use super::*;
|
||||||
|
use core::ffi::*;
|
||||||
|
use opencv::core::prelude::*;
|
||||||
|
pub(crate) unsafe fn ndarray_to_mat_regular<
|
||||||
|
T,
|
||||||
|
S: ndarray::Data<Elem = T>,
|
||||||
|
D: ndarray::Dimension,
|
||||||
|
>(
|
||||||
|
input: &ndarray::ArrayBase<S, D>,
|
||||||
|
) -> Result<opencv::core::Mat, NdCvError> {
|
||||||
|
let shape = input.shape();
|
||||||
|
let strides = input.strides();
|
||||||
|
|
||||||
|
// let channels = shape.last().copied().unwrap_or(1);
|
||||||
|
// if channels > opencv::core::CV_CN_MAX as usize {
|
||||||
|
// Err(Report::new(NdCvError).attach_printable(format!(
|
||||||
|
// "Number of channels({channels}) exceeds CV_CN_MAX({}) use the regular version of the function", opencv::core::CV_CN_MAX
|
||||||
|
// )))?;
|
||||||
|
// }
|
||||||
|
|
||||||
|
// let size_len = shape.len();
|
||||||
|
let size = shape.iter().copied().map(|f| f as i32).collect::<Vec<_>>();
|
||||||
|
// Step len for ndarray is always 1 less than ndims
|
||||||
|
let step_len = strides.len() - 1;
|
||||||
|
let step = strides
|
||||||
|
.iter()
|
||||||
|
.take(step_len)
|
||||||
|
.copied()
|
||||||
|
.map(|f| f as usize * core::mem::size_of::<T>())
|
||||||
|
.collect::<Vec<_>>();
|
||||||
|
|
||||||
|
let data_ptr = input.as_ptr() as *const c_void;
|
||||||
|
|
||||||
|
let typ = opencv::core::CV_MAKETYPE(type_depth::<T>(), 1);
|
||||||
|
let mat = opencv::core::Mat::new_nd_with_data_unsafe(
|
||||||
|
size.as_slice(),
|
||||||
|
typ,
|
||||||
|
data_ptr.cast_mut(),
|
||||||
|
Some(step.as_slice()),
|
||||||
|
)
|
||||||
|
.change_context(NdCvError)?;
|
||||||
|
|
||||||
|
Ok(mat)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub(crate) unsafe fn ndarray_to_mat_consolidated<
|
||||||
|
T,
|
||||||
|
S: ndarray::Data<Elem = T>,
|
||||||
|
D: ndarray::Dimension,
|
||||||
|
>(
|
||||||
|
input: &ndarray::ArrayBase<S, D>,
|
||||||
|
) -> Result<opencv::core::Mat, NdCvError> {
|
||||||
|
let shape = input.shape();
|
||||||
|
let strides = input.strides();
|
||||||
|
|
||||||
|
let channels = shape.last().copied().unwrap_or(1);
|
||||||
|
if channels > opencv::core::CV_CN_MAX as usize {
|
||||||
|
Err(Report::new(NdCvError).attach_printable(format!(
|
||||||
|
"Number of channels({channels}) exceeds CV_CN_MAX({}) use the regular version of the function", opencv::core::CV_CN_MAX
|
||||||
|
)))?;
|
||||||
|
}
|
||||||
|
|
||||||
|
if shape.len() > 2 {
|
||||||
|
// Basically the second last stride is used to jump from one column to next
|
||||||
|
// But opencv only keeps ndims - 1 strides so we can't have the column stride as that
|
||||||
|
// will be lost
|
||||||
|
if shape.last() != strides.get(strides.len() - 2).map(|x| *x as usize).as_ref() {
|
||||||
|
Err(Report::new(NdCvError).attach_printable(
|
||||||
|
"You cannot slice into the last axis in ndarray when converting to mat",
|
||||||
|
))?;
|
||||||
|
}
|
||||||
|
} else if shape.len() == 1 {
|
||||||
|
return Err(Report::new(NdCvError).attach_printable(
|
||||||
|
"You cannot convert a 1D array to a Mat while using the consolidated version",
|
||||||
|
));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Since this is the consolidated version we should always only have ndims - 1 sizes and
|
||||||
|
// ndims - 2 strides
|
||||||
|
|
||||||
|
let size_len = shape.len() - 1; // Since we move last axis into the channel
|
||||||
|
let size = shape
|
||||||
|
.iter()
|
||||||
|
.take(size_len)
|
||||||
|
.map(|f| *f as i32)
|
||||||
|
.collect::<Vec<_>>();
|
||||||
|
|
||||||
|
let step_len = strides.len() - 1;
|
||||||
|
let step = strides
|
||||||
|
.iter()
|
||||||
|
.take(step_len)
|
||||||
|
.map(|f| *f as usize * core::mem::size_of::<T>())
|
||||||
|
.collect::<Vec<_>>();
|
||||||
|
|
||||||
|
let data_ptr = input.as_ptr() as *const c_void;
|
||||||
|
|
||||||
|
let typ = opencv::core::CV_MAKETYPE(type_depth::<T>(), channels as i32);
|
||||||
|
|
||||||
|
let mat = opencv::core::Mat::new_nd_with_data_unsafe(
|
||||||
|
size.as_slice(),
|
||||||
|
typ,
|
||||||
|
data_ptr.cast_mut(),
|
||||||
|
Some(step.as_slice()),
|
||||||
|
)
|
||||||
|
.change_context(NdCvError)?;
|
||||||
|
|
||||||
|
Ok(mat)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub(crate) unsafe fn mat_to_ndarray<T: bytemuck::Pod, D: ndarray::Dimension>(
|
||||||
|
mat: &opencv::core::Mat,
|
||||||
|
) -> Result<ndarray::ArrayView<'_, T, D>, NdCvError> {
|
||||||
|
let depth = mat.depth();
|
||||||
|
if type_depth::<T>() != depth {
|
||||||
|
return Err(Report::new(NdCvError).attach_printable(format!(
|
||||||
|
"Expected type Mat<{}> ({}), got Mat<{}> ({})",
|
||||||
|
std::any::type_name::<T>(),
|
||||||
|
type_depth::<T>(),
|
||||||
|
crate::depth_type(depth),
|
||||||
|
depth,
|
||||||
|
)));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Since a dims always returns >= 2 we can't use this to check if it's a 1D array
|
||||||
|
// So we compare the first axis to the total to see if its a 1D array
|
||||||
|
let is_1d = mat.total() as i32 == mat.rows();
|
||||||
|
let dims = is_1d.then_some(1).unwrap_or(mat.dims());
|
||||||
|
let channels = mat.channels();
|
||||||
|
let ndarray_size = (channels != 1).then_some(dims + 1).unwrap_or(dims) as usize;
|
||||||
|
if let Some(ndim) = D::NDIM {
|
||||||
|
// When channels is not 1,
|
||||||
|
// the last dimension is the channels
|
||||||
|
// Array1 -> Mat(ndims = 1, channels = 1)
|
||||||
|
// Array2 -> Mat(ndims = 1, channels = X)
|
||||||
|
// Array2 -> Mat(ndims = 2, channels = 1)
|
||||||
|
// Array3 -> Mat(ndims = 2, channels = X)
|
||||||
|
// Array3 -> Mat(ndims = 3, channels = 1)
|
||||||
|
// ...
|
||||||
|
if ndim != dims as usize && channels == 1 {
|
||||||
|
return Err(Report::new(NdCvError)
|
||||||
|
.attach_printable(format!("Expected {}D array, got {}D", ndim, ndarray_size)));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
let mat_size = mat.mat_size();
|
||||||
|
let sizes = (0..dims)
|
||||||
|
.map(|i| mat_size.get(i).change_context(NdCvError))
|
||||||
|
.chain([Ok(channels)])
|
||||||
|
.map(|x| x.map(|x| x as usize))
|
||||||
|
.take(ndarray_size)
|
||||||
|
.collect::<Result<Vec<_>, NdCvError>>()
|
||||||
|
.change_context(NdCvError)?;
|
||||||
|
let strides = (0..(dims - 1))
|
||||||
|
.map(|i| mat.step1(i).change_context(NdCvError))
|
||||||
|
.chain([
|
||||||
|
Ok(channels as usize),
|
||||||
|
Ok((channels == 1).then_some(0).unwrap_or(1)),
|
||||||
|
])
|
||||||
|
.take(ndarray_size)
|
||||||
|
.collect::<Result<Vec<_>, NdCvError>>()
|
||||||
|
.change_context(NdCvError)?;
|
||||||
|
use ndarray::ShapeBuilder;
|
||||||
|
let shape = sizes.strides(strides);
|
||||||
|
let raw_array = ndarray::RawArrayView::from_shape_ptr(shape, mat.data() as *const T)
|
||||||
|
.into_dimensionality()
|
||||||
|
.change_context(NdCvError)?;
|
||||||
|
Ok(unsafe { raw_array.deref_into_view() })
|
||||||
|
}
|
||||||
73
ndcv-bridge/src/conversions/matref.rs
Normal file
73
ndcv-bridge/src/conversions/matref.rs
Normal file
@@ -0,0 +1,73 @@
|
|||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct MatRef<'a> {
|
||||||
|
pub(crate) mat: opencv::core::Mat,
|
||||||
|
pub(crate) _marker: core::marker::PhantomData<&'a ()>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl MatRef<'_> {
|
||||||
|
pub fn clone_pointee(&self) -> opencv::core::Mat {
|
||||||
|
self.mat.clone()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl MatRef<'_> {
|
||||||
|
pub fn new<'a>(mat: opencv::core::Mat) -> MatRef<'a> {
|
||||||
|
MatRef {
|
||||||
|
mat,
|
||||||
|
_marker: core::marker::PhantomData,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl AsRef<opencv::core::Mat> for MatRef<'_> {
|
||||||
|
fn as_ref(&self) -> &opencv::core::Mat {
|
||||||
|
&self.mat
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl AsRef<opencv::core::Mat> for MatRefMut<'_> {
|
||||||
|
fn as_ref(&self) -> &opencv::core::Mat {
|
||||||
|
&self.mat
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl AsMut<opencv::core::Mat> for MatRefMut<'_> {
|
||||||
|
fn as_mut(&mut self) -> &mut opencv::core::Mat {
|
||||||
|
&mut self.mat
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct MatRefMut<'a> {
|
||||||
|
pub(crate) mat: opencv::core::Mat,
|
||||||
|
pub(crate) _marker: core::marker::PhantomData<&'a mut ()>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl MatRefMut<'_> {
|
||||||
|
pub fn new<'a>(mat: opencv::core::Mat) -> MatRefMut<'a> {
|
||||||
|
MatRefMut {
|
||||||
|
mat,
|
||||||
|
_marker: core::marker::PhantomData,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl core::ops::Deref for MatRef<'_> {
|
||||||
|
type Target = opencv::core::Mat;
|
||||||
|
fn deref(&self) -> &Self::Target {
|
||||||
|
&self.mat
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl core::ops::Deref for MatRefMut<'_> {
|
||||||
|
type Target = opencv::core::Mat;
|
||||||
|
fn deref(&self) -> &Self::Target {
|
||||||
|
&self.mat
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl core::ops::DerefMut for MatRefMut<'_> {
|
||||||
|
fn deref_mut(&mut self) -> &mut Self::Target {
|
||||||
|
&mut self.mat
|
||||||
|
}
|
||||||
|
}
|
||||||
262
ndcv-bridge/src/fir.rs
Normal file
262
ndcv-bridge/src/fir.rs
Normal file
@@ -0,0 +1,262 @@
|
|||||||
|
use error_stack::*;
|
||||||
|
use fast_image_resize::*;
|
||||||
|
use images::{Image, ImageRef};
|
||||||
|
#[derive(Debug, Clone, thiserror::Error)]
|
||||||
|
#[error("NdFirError")]
|
||||||
|
pub struct NdFirError;
|
||||||
|
type Result<T, E = Report<NdFirError>> = std::result::Result<T, E>;
|
||||||
|
|
||||||
|
pub trait NdAsImage<T: seal::Sealed, D: ndarray::Dimension>: Sized {
|
||||||
|
fn as_image_ref(&self) -> Result<ImageRef<'_>>;
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait NdAsImageMut<T: seal::Sealed, D: ndarray::Dimension>: Sized {
|
||||||
|
fn as_image_ref_mut(&mut self) -> Result<Image<'_>>;
|
||||||
|
}
|
||||||
|
|
||||||
|
pub struct NdarrayImageContainer<'a, T: seal::Sealed, D: ndarray::Dimension> {
|
||||||
|
#[allow(dead_code)]
|
||||||
|
data: ndarray::ArrayView<'a, T, D>,
|
||||||
|
pub _phantom: std::marker::PhantomData<(T, D)>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'a, T: seal::Sealed> NdarrayImageContainer<'a, T, ndarray::Ix3> {
|
||||||
|
pub fn new<S: ndarray::Data<Elem = T>>(array: &'a ndarray::ArrayBase<S, ndarray::Ix3>) -> Self {
|
||||||
|
Self {
|
||||||
|
data: array.view(),
|
||||||
|
_phantom: std::marker::PhantomData,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'a, T: seal::Sealed> NdarrayImageContainer<'a, T, ndarray::Ix2> {
|
||||||
|
pub fn new<S: ndarray::Data<Elem = T>>(array: &'a ndarray::ArrayBase<S, ndarray::Ix2>) -> Self {
|
||||||
|
Self {
|
||||||
|
data: array.view(),
|
||||||
|
_phantom: std::marker::PhantomData,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
pub struct NdarrayImageContainerMut<'a, T: seal::Sealed, D: ndarray::Dimension> {
|
||||||
|
#[allow(dead_code)]
|
||||||
|
data: ndarray::ArrayViewMut<'a, T, D>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'a, T: seal::Sealed> NdarrayImageContainerMut<'a, T, ndarray::Ix3> {
|
||||||
|
pub fn new<S: ndarray::DataMut<Elem = T>>(
|
||||||
|
array: &'a mut ndarray::ArrayBase<S, ndarray::Ix3>,
|
||||||
|
) -> Self {
|
||||||
|
Self {
|
||||||
|
data: array.view_mut(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<'a, T: seal::Sealed> NdarrayImageContainerMut<'a, T, ndarray::Ix2> {
|
||||||
|
pub fn new<S: ndarray::DataMut<Elem = T>>(
|
||||||
|
array: &'a mut ndarray::ArrayBase<S, ndarray::Ix2>,
|
||||||
|
) -> Self {
|
||||||
|
Self {
|
||||||
|
data: array.view_mut(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub struct NdarrayImageContainerTyped<'a, T: seal::Sealed, D: ndarray::Dimension, P: PixelTrait> {
|
||||||
|
#[allow(dead_code)]
|
||||||
|
data: ndarray::ArrayView<'a, T, D>,
|
||||||
|
__marker: std::marker::PhantomData<P>,
|
||||||
|
}
|
||||||
|
|
||||||
|
// unsafe impl<'a, T: seal::Sealed + Sync + InnerPixel, P: PixelTrait> ImageView
|
||||||
|
// for NdarrayImageContainerTyped<'a, T, ndarray::Ix3, P>
|
||||||
|
// where
|
||||||
|
// T: bytemuck::Pod,
|
||||||
|
// {
|
||||||
|
// type Pixel = P;
|
||||||
|
// fn width(&self) -> u32 {
|
||||||
|
// self.data.shape()[1] as u32
|
||||||
|
// }
|
||||||
|
// fn height(&self) -> u32 {
|
||||||
|
// self.data.shape()[0] as u32
|
||||||
|
// }
|
||||||
|
// fn iter_rows(&self, start_row: u32) -> impl Iterator<Item = &[Self::Pixel]> {
|
||||||
|
// self.data
|
||||||
|
// .rows()
|
||||||
|
// .into_iter()
|
||||||
|
// .skip(start_row as usize)
|
||||||
|
// .map(|row| {
|
||||||
|
// row.as_slice()
|
||||||
|
// .unwrap_or_default()
|
||||||
|
// .chunks_exact(P::CHANNELS as usize)
|
||||||
|
// })
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
|
||||||
|
// impl<'a, T: fast_image_resize::pixels::InnerPixel + seal::Sealed, D: ndarray::Dimension>
|
||||||
|
// fast_image_resize::IntoImageView for NdarrayImageContainer<'a, T, D>
|
||||||
|
// {
|
||||||
|
// fn pixel_type(&self) -> Option<PixelType> {
|
||||||
|
// match D::NDIM {
|
||||||
|
// Some(2) => Some(to_pixel_type::<T>(1).expect("Failed to convert to pixel type")),
|
||||||
|
// Some(3) => Some(
|
||||||
|
// to_pixel_type::<T>(self.data.shape()[2]).expect("Failed to convert to pixel type"),
|
||||||
|
// ),
|
||||||
|
// _ => None,
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
// fn width(&self) -> u32 {
|
||||||
|
// self.data.shape()[1] as u32
|
||||||
|
// }
|
||||||
|
// fn height(&self) -> u32 {
|
||||||
|
// self.data.shape()[0] as u32
|
||||||
|
// }
|
||||||
|
// fn image_view<P: PixelTrait>(&'a self) -> Option<NdarrayImageContainerTyped<'a, T, D, P>> {
|
||||||
|
// Some(NdarrayImageContainerTyped {
|
||||||
|
// data: self.data.view(),
|
||||||
|
// __marker: std::marker::PhantomData,
|
||||||
|
// })
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
|
||||||
|
pub fn to_pixel_type<T: seal::Sealed>(u: usize) -> Result<PixelType> {
|
||||||
|
match (core::any::type_name::<T>(), u) {
|
||||||
|
("u8", 1) => Ok(PixelType::U8),
|
||||||
|
("u8", 2) => Ok(PixelType::U8x2),
|
||||||
|
("u8", 3) => Ok(PixelType::U8x3),
|
||||||
|
("u8", 4) => Ok(PixelType::U8x4),
|
||||||
|
("u16", 1) => Ok(PixelType::U16),
|
||||||
|
("i32", 1) => Ok(PixelType::I32),
|
||||||
|
("f32", 1) => Ok(PixelType::F32),
|
||||||
|
("f32", 2) => Ok(PixelType::F32x2),
|
||||||
|
("f32", 3) => Ok(PixelType::F32x3),
|
||||||
|
("f32", 4) => Ok(PixelType::F32x4),
|
||||||
|
_ => Err(Report::new(NdFirError).attach_printable("Unsupported pixel type")),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
mod seal {
|
||||||
|
pub trait Sealed {}
|
||||||
|
impl Sealed for u8 {}
|
||||||
|
impl Sealed for u16 {}
|
||||||
|
impl Sealed for i32 {}
|
||||||
|
impl Sealed for f32 {}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<S: ndarray::Data<Elem = T>, T: seal::Sealed + bytemuck::Pod, D: ndarray::Dimension>
|
||||||
|
NdAsImage<T, D> for ndarray::ArrayBase<S, D>
|
||||||
|
{
|
||||||
|
/// Clones self and makes a new image
|
||||||
|
fn as_image_ref(&self) -> Result<ImageRef> {
|
||||||
|
let shape = self.shape();
|
||||||
|
let rows = *shape
|
||||||
|
.first()
|
||||||
|
.ok_or_else(|| Report::new(NdFirError).attach_printable("Failed to get rows"))?
|
||||||
|
as u32;
|
||||||
|
let cols = *shape.get(1).unwrap_or(&1) as u32;
|
||||||
|
let channels = *shape.get(2).unwrap_or(&1);
|
||||||
|
let data = self
|
||||||
|
.as_slice()
|
||||||
|
.ok_or(NdFirError)
|
||||||
|
.attach_printable("The ndarray is non continuous")?;
|
||||||
|
let data_bytes: &[u8] = bytemuck::cast_slice(data);
|
||||||
|
|
||||||
|
let pixel_type = to_pixel_type::<T>(channels)?;
|
||||||
|
ImageRef::new(cols, rows, data_bytes, pixel_type)
|
||||||
|
.change_context(NdFirError)
|
||||||
|
.attach_printable("Failed to create Image from ndarray")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<S: ndarray::DataMut<Elem = T>, T: seal::Sealed + bytemuck::Pod, D: ndarray::Dimension>
|
||||||
|
NdAsImageMut<T, D> for ndarray::ArrayBase<S, D>
|
||||||
|
{
|
||||||
|
fn as_image_ref_mut(&mut self) -> Result<Image<'_>>
|
||||||
|
where
|
||||||
|
S: ndarray::DataMut<Elem = T>,
|
||||||
|
{
|
||||||
|
let shape = self.shape();
|
||||||
|
let rows = *shape
|
||||||
|
.first()
|
||||||
|
.ok_or_else(|| Report::new(NdFirError).attach_printable("Failed to get rows"))?
|
||||||
|
as u32;
|
||||||
|
let cols = *shape.get(1).unwrap_or(&1) as u32;
|
||||||
|
let channels = *shape.get(2).unwrap_or(&1);
|
||||||
|
let data = self
|
||||||
|
.as_slice_mut()
|
||||||
|
.ok_or(NdFirError)
|
||||||
|
.attach_printable("The ndarray is non continuous")?;
|
||||||
|
let data_bytes: &mut [u8] = bytemuck::cast_slice_mut(data);
|
||||||
|
|
||||||
|
let pixel_type = to_pixel_type::<T>(channels)?;
|
||||||
|
Image::from_slice_u8(cols, rows, data_bytes, pixel_type)
|
||||||
|
.change_context(NdFirError)
|
||||||
|
.attach_printable("Failed to create Image from ndarray")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait NdFir<T, D> {
|
||||||
|
fn fast_resize<'o>(
|
||||||
|
&self,
|
||||||
|
height: usize,
|
||||||
|
width: usize,
|
||||||
|
options: impl Into<Option<&'o ResizeOptions>>,
|
||||||
|
) -> Result<ndarray::Array<T, D>>;
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: seal::Sealed + bytemuck::Pod + num::Zero, S: ndarray::Data<Elem = T>> NdFir<T, ndarray::Ix3>
|
||||||
|
for ndarray::ArrayBase<S, ndarray::Ix3>
|
||||||
|
{
|
||||||
|
fn fast_resize<'o>(
|
||||||
|
&self,
|
||||||
|
height: usize,
|
||||||
|
width: usize,
|
||||||
|
options: impl Into<Option<&'o ResizeOptions>>,
|
||||||
|
) -> Result<ndarray::Array3<T>> {
|
||||||
|
let source = self.as_image_ref()?;
|
||||||
|
let (_height, _width, channels) = self.dim();
|
||||||
|
let mut dest = ndarray::Array3::<T>::zeros((height, width, channels));
|
||||||
|
let mut dest_image = dest.as_image_ref_mut()?;
|
||||||
|
let mut resizer = fast_image_resize::Resizer::default();
|
||||||
|
resizer
|
||||||
|
.resize(&source, &mut dest_image, options)
|
||||||
|
.change_context(NdFirError)?;
|
||||||
|
Ok(dest)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: seal::Sealed + bytemuck::Pod + num::Zero, S: ndarray::Data<Elem = T>> NdFir<T, ndarray::Ix2>
|
||||||
|
for ndarray::ArrayBase<S, ndarray::Ix2>
|
||||||
|
{
|
||||||
|
fn fast_resize<'o>(
|
||||||
|
&self,
|
||||||
|
height: usize,
|
||||||
|
width: usize,
|
||||||
|
options: impl Into<Option<&'o ResizeOptions>>,
|
||||||
|
) -> Result<ndarray::Array<T, ndarray::Ix2>> {
|
||||||
|
let source = self.as_image_ref()?;
|
||||||
|
let (_height, _width) = self.dim();
|
||||||
|
let mut dest = ndarray::Array::<T, ndarray::Ix2>::zeros((height, width));
|
||||||
|
let mut dest_image = dest.as_image_ref_mut()?;
|
||||||
|
let mut resizer = fast_image_resize::Resizer::default();
|
||||||
|
resizer
|
||||||
|
.resize(&source, &mut dest_image, options)
|
||||||
|
.change_context(NdFirError)?;
|
||||||
|
Ok(dest)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
pub fn test_ndarray_fast_image_resize_u8() {
|
||||||
|
let source_fhd = ndarray::Array3::<u8>::ones((1920, 1080, 3));
|
||||||
|
let mut resized_hd = ndarray::Array3::<u8>::zeros((1280, 720, 3));
|
||||||
|
let mut resizer = fast_image_resize::Resizer::default();
|
||||||
|
resizer
|
||||||
|
.resize(
|
||||||
|
&source_fhd.as_image_ref().unwrap(),
|
||||||
|
&mut resized_hd.as_image_ref_mut().unwrap(),
|
||||||
|
None,
|
||||||
|
)
|
||||||
|
.unwrap();
|
||||||
|
assert_eq!(resized_hd.shape(), [1280, 720, 3]);
|
||||||
|
}
|
||||||
307
ndcv-bridge/src/gaussian.rs
Normal file
307
ndcv-bridge/src/gaussian.rs
Normal file
@@ -0,0 +1,307 @@
|
|||||||
|
//! <https://docs.rs/opencv/latest/opencv/imgproc/fn.gaussian_blur.html>
|
||||||
|
use crate::conversions::*;
|
||||||
|
use crate::prelude_::*;
|
||||||
|
use ndarray::*;
|
||||||
|
|
||||||
|
#[repr(C)]
|
||||||
|
#[derive(Default, Debug, Copy, Clone)]
|
||||||
|
pub enum BorderType {
|
||||||
|
#[default]
|
||||||
|
BorderConstant = 0,
|
||||||
|
BorderReplicate = 1,
|
||||||
|
BorderReflect = 2,
|
||||||
|
BorderWrap = 3,
|
||||||
|
BorderReflect101 = 4,
|
||||||
|
BorderTransparent = 5,
|
||||||
|
BorderIsolated = 16,
|
||||||
|
}
|
||||||
|
|
||||||
|
#[repr(C)]
|
||||||
|
#[derive(Default, Debug, Copy, Clone)]
|
||||||
|
pub enum AlgorithmHint {
|
||||||
|
#[default]
|
||||||
|
AlgoHintDefault = 0,
|
||||||
|
AlgoHintAccurate = 1,
|
||||||
|
AlgoHintApprox = 2,
|
||||||
|
}
|
||||||
|
|
||||||
|
mod seal {
|
||||||
|
pub trait Sealed {}
|
||||||
|
// src: input image; the image can have any number of channels, which are processed independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
|
||||||
|
impl Sealed for u8 {}
|
||||||
|
impl Sealed for u16 {}
|
||||||
|
impl Sealed for i16 {}
|
||||||
|
impl Sealed for f32 {}
|
||||||
|
impl Sealed for f64 {}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait NdCvGaussianBlur<T: bytemuck::Pod + seal::Sealed, D: ndarray::Dimension>:
|
||||||
|
crate::image::NdImage + crate::conversions::NdAsImage<T, D>
|
||||||
|
{
|
||||||
|
fn gaussian_blur(
|
||||||
|
&self,
|
||||||
|
kernel_size: (u8, u8),
|
||||||
|
sigma_x: f64,
|
||||||
|
sigma_y: f64,
|
||||||
|
border_type: BorderType,
|
||||||
|
) -> Result<ndarray::Array<T, D>, NdCvError>;
|
||||||
|
fn gaussian_blur_def(
|
||||||
|
&self,
|
||||||
|
kernel: (u8, u8),
|
||||||
|
sigma_x: f64,
|
||||||
|
) -> Result<ndarray::Array<T, D>, NdCvError> {
|
||||||
|
self.gaussian_blur(kernel, sigma_x, sigma_x, BorderType::BorderConstant)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<
|
||||||
|
T: bytemuck::Pod + num::Zero + seal::Sealed,
|
||||||
|
S: ndarray::RawData + ndarray::Data<Elem = T>,
|
||||||
|
D: ndarray::Dimension,
|
||||||
|
> NdCvGaussianBlur<T, D> for ArrayBase<S, D>
|
||||||
|
where
|
||||||
|
ndarray::ArrayBase<S, D>: crate::image::NdImage + crate::conversions::NdAsImage<T, D>,
|
||||||
|
ndarray::Array<T, D>: crate::conversions::NdAsImageMut<T, D>,
|
||||||
|
{
|
||||||
|
fn gaussian_blur(
|
||||||
|
&self,
|
||||||
|
kernel_size: (u8, u8),
|
||||||
|
sigma_x: f64,
|
||||||
|
sigma_y: f64,
|
||||||
|
border_type: BorderType,
|
||||||
|
) -> Result<ndarray::Array<T, D>, NdCvError> {
|
||||||
|
let mut dst = ndarray::Array::zeros(self.dim());
|
||||||
|
let cv_self = self.as_image_mat()?;
|
||||||
|
let mut cv_dst = dst.as_image_mat_mut()?;
|
||||||
|
opencv::imgproc::gaussian_blur(
|
||||||
|
&*cv_self,
|
||||||
|
&mut *cv_dst,
|
||||||
|
opencv::core::Size {
|
||||||
|
width: kernel_size.0 as i32,
|
||||||
|
height: kernel_size.1 as i32,
|
||||||
|
},
|
||||||
|
sigma_x,
|
||||||
|
sigma_y,
|
||||||
|
border_type as i32,
|
||||||
|
)
|
||||||
|
.change_context(NdCvError)
|
||||||
|
.attach_printable("Failed to apply gaussian blur")?;
|
||||||
|
Ok(dst)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// impl<
|
||||||
|
// T: bytemuck::Pod + num::Zero + seal::Sealed,
|
||||||
|
// S: ndarray::RawData + ndarray::Data<Elem = T>,
|
||||||
|
// > NdCvGaussianBlur<T, Ix3> for ArrayBase<S, Ix3>
|
||||||
|
// {
|
||||||
|
// fn gaussian_blur(
|
||||||
|
// &self,
|
||||||
|
// kernel_size: (u8, u8),
|
||||||
|
// sigma_x: f64,
|
||||||
|
// sigma_y: f64,
|
||||||
|
// border_type: BorderType,
|
||||||
|
// ) -> Result<ndarray::Array<T, Ix3>, NdCvError> {
|
||||||
|
// let mut dst = ndarray::Array::zeros(self.dim());
|
||||||
|
// let cv_self = self.as_image_mat()?;
|
||||||
|
// let mut cv_dst = dst.as_image_mat_mut()?;
|
||||||
|
// opencv::imgproc::gaussian_blur(
|
||||||
|
// &*cv_self,
|
||||||
|
// &mut *cv_dst,
|
||||||
|
// opencv::core::Size {
|
||||||
|
// width: kernel_size.0 as i32,
|
||||||
|
// height: kernel_size.1 as i32,
|
||||||
|
// },
|
||||||
|
// sigma_x,
|
||||||
|
// sigma_y,
|
||||||
|
// border_type as i32,
|
||||||
|
// )
|
||||||
|
// .change_context(NdCvError)
|
||||||
|
// .attach_printable("Failed to apply gaussian blur")?;
|
||||||
|
// Ok(dst)
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
//
|
||||||
|
// impl<
|
||||||
|
// T: bytemuck::Pod + num::Zero + seal::Sealed,
|
||||||
|
// S: ndarray::RawData + ndarray::Data<Elem = T>,
|
||||||
|
// > NdCvGaussianBlur<T, Ix2> for ArrayBase<S, Ix2>
|
||||||
|
// {
|
||||||
|
// fn gaussian_blur(
|
||||||
|
// &self,
|
||||||
|
// kernel_size: (u8, u8),
|
||||||
|
// sigma_x: f64,
|
||||||
|
// sigma_y: f64,
|
||||||
|
// border_type: BorderType,
|
||||||
|
// ) -> Result<ndarray::Array<T, Ix2>, NdCvError> {
|
||||||
|
// let mut dst = ndarray::Array::zeros(self.dim());
|
||||||
|
// let cv_self = self.as_image_mat()?;
|
||||||
|
// let mut cv_dst = dst.as_image_mat_mut()?;
|
||||||
|
// opencv::imgproc::gaussian_blur(
|
||||||
|
// &*cv_self,
|
||||||
|
// &mut *cv_dst,
|
||||||
|
// opencv::core::Size {
|
||||||
|
// width: kernel_size.0 as i32,
|
||||||
|
// height: kernel_size.1 as i32,
|
||||||
|
// },
|
||||||
|
// sigma_x,
|
||||||
|
// sigma_y,
|
||||||
|
// border_type as i32,
|
||||||
|
// )
|
||||||
|
// .change_context(NdCvError)
|
||||||
|
// .attach_printable("Failed to apply gaussian blur")?;
|
||||||
|
// Ok(dst)
|
||||||
|
// }
|
||||||
|
// }
|
||||||
|
|
||||||
|
/// For smaller values it is faster to use the allocated version
|
||||||
|
/// For example in a 4k f32 image this is about 50% faster than the allocated one
|
||||||
|
pub trait NdCvGaussianBlurInPlace<T: bytemuck::Pod + seal::Sealed, D: ndarray::Dimension>:
|
||||||
|
crate::image::NdImage + crate::conversions::NdAsImageMut<T, D>
|
||||||
|
{
|
||||||
|
fn gaussian_blur_inplace(
|
||||||
|
&mut self,
|
||||||
|
kernel_size: (u8, u8),
|
||||||
|
sigma_x: f64,
|
||||||
|
sigma_y: f64,
|
||||||
|
border_type: BorderType,
|
||||||
|
) -> Result<&mut Self, NdCvError>;
|
||||||
|
fn gaussian_blur_def_inplace(
|
||||||
|
&mut self,
|
||||||
|
kernel: (u8, u8),
|
||||||
|
sigma_x: f64,
|
||||||
|
) -> Result<&mut Self, NdCvError> {
|
||||||
|
self.gaussian_blur_inplace(kernel, sigma_x, sigma_x, BorderType::BorderConstant)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<
|
||||||
|
T: bytemuck::Pod + num::Zero + seal::Sealed,
|
||||||
|
S: ndarray::RawData + ndarray::DataMut<Elem = T>,
|
||||||
|
D: ndarray::Dimension,
|
||||||
|
> NdCvGaussianBlurInPlace<T, D> for ArrayBase<S, D>
|
||||||
|
where
|
||||||
|
Self: crate::image::NdImage + crate::conversions::NdAsImageMut<T, D>,
|
||||||
|
{
|
||||||
|
fn gaussian_blur_inplace(
|
||||||
|
&mut self,
|
||||||
|
kernel_size: (u8, u8),
|
||||||
|
sigma_x: f64,
|
||||||
|
sigma_y: f64,
|
||||||
|
border_type: BorderType,
|
||||||
|
) -> Result<&mut Self, NdCvError> {
|
||||||
|
let mut cv_self = self.as_image_mat_mut()?;
|
||||||
|
|
||||||
|
unsafe {
|
||||||
|
crate::inplace::op_inplace(&mut *cv_self, |this, out| {
|
||||||
|
opencv::imgproc::gaussian_blur(
|
||||||
|
this,
|
||||||
|
out,
|
||||||
|
opencv::core::Size {
|
||||||
|
width: kernel_size.0 as i32,
|
||||||
|
height: kernel_size.1 as i32,
|
||||||
|
},
|
||||||
|
sigma_x,
|
||||||
|
sigma_y,
|
||||||
|
border_type as i32,
|
||||||
|
)
|
||||||
|
})
|
||||||
|
}
|
||||||
|
.change_context(NdCvError)
|
||||||
|
.attach_printable("Failed to apply gaussian blur")?;
|
||||||
|
Ok(self)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
use ndarray::Array3;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_gaussian_basic() {
|
||||||
|
let arr = Array3::<u8>::ones((10, 10, 3));
|
||||||
|
let kernel_size = (3, 3);
|
||||||
|
let sigma_x = 0.0;
|
||||||
|
let sigma_y = 0.0;
|
||||||
|
let border_type = BorderType::BorderConstant;
|
||||||
|
let res = arr
|
||||||
|
.gaussian_blur(kernel_size, sigma_x, sigma_y, border_type)
|
||||||
|
.unwrap();
|
||||||
|
assert_eq!(res.shape(), &[10, 10, 3]);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_gaussian_edge_preservation() {
|
||||||
|
// Create an image with a sharp edge
|
||||||
|
let mut arr = Array3::<u8>::zeros((10, 10, 3));
|
||||||
|
arr.slice_mut(s![..5, .., ..]).fill(255); // Top half white, bottom half black
|
||||||
|
|
||||||
|
let res = arr
|
||||||
|
.gaussian_blur((3, 3), 1.0, 1.0, BorderType::BorderConstant)
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
// Check that the middle row (edge) has intermediate values
|
||||||
|
let middle_row = res.slice(s![4..6, 5, 0]);
|
||||||
|
assert!(middle_row.iter().all(|&x| x > 0 && x < 255));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_gaussian_different_kernel_sizes() {
|
||||||
|
let arr = Array3::<u8>::ones((20, 20, 3));
|
||||||
|
|
||||||
|
// Test different kernel sizes
|
||||||
|
let kernel_sizes = [(3, 3), (5, 5), (7, 7)];
|
||||||
|
for &kernel_size in &kernel_sizes {
|
||||||
|
let res = arr
|
||||||
|
.gaussian_blur(kernel_size, 1.0, 1.0, BorderType::BorderConstant)
|
||||||
|
.unwrap();
|
||||||
|
assert_eq!(res.shape(), &[20, 20, 3]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_gaussian_different_border_types() {
|
||||||
|
let mut arr = Array3::<u8>::zeros((10, 10, 3));
|
||||||
|
arr.slice_mut(s![4..7, 4..7, ..]).fill(255); // White square in center
|
||||||
|
|
||||||
|
let border_types = [
|
||||||
|
BorderType::BorderConstant,
|
||||||
|
BorderType::BorderReplicate,
|
||||||
|
BorderType::BorderReflect,
|
||||||
|
BorderType::BorderReflect101,
|
||||||
|
];
|
||||||
|
|
||||||
|
for border_type in border_types {
|
||||||
|
let res = arr.gaussian_blur((3, 3), 1.0, 1.0, border_type).unwrap();
|
||||||
|
assert_eq!(res.shape(), &[10, 10, 3]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_gaussian_different_types() {
|
||||||
|
// Test with different numeric types
|
||||||
|
let arr_u8 = Array3::<u8>::ones((10, 10, 3));
|
||||||
|
let arr_f32 = Array3::<f32>::ones((10, 10, 3));
|
||||||
|
|
||||||
|
let res_u8 = arr_u8
|
||||||
|
.gaussian_blur((3, 3), 1.0, 1.0, BorderType::BorderConstant)
|
||||||
|
.unwrap();
|
||||||
|
let res_f32 = arr_f32
|
||||||
|
.gaussian_blur((3, 3), 1.0, 1.0, BorderType::BorderConstant)
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
assert_eq!(res_u8.shape(), &[10, 10, 3]);
|
||||||
|
assert_eq!(res_f32.shape(), &[10, 10, 3]);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
#[should_panic]
|
||||||
|
fn test_gaussian_invalid_kernel_size() {
|
||||||
|
let arr = Array3::<u8>::ones((10, 10, 3));
|
||||||
|
// Even kernel sizes should fail
|
||||||
|
let _ = arr
|
||||||
|
.gaussian_blur((2, 2), 1.0, 1.0, BorderType::BorderConstant)
|
||||||
|
.unwrap();
|
||||||
|
}
|
||||||
|
}
|
||||||
30
ndcv-bridge/src/image.rs
Normal file
30
ndcv-bridge/src/image.rs
Normal file
@@ -0,0 +1,30 @@
|
|||||||
|
use ndarray::*;
|
||||||
|
pub trait NdImage {
|
||||||
|
fn width(&self) -> usize;
|
||||||
|
fn height(&self) -> usize;
|
||||||
|
fn channels(&self) -> usize;
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T, S: RawData<Elem = T>> NdImage for ArrayBase<S, Ix3> {
|
||||||
|
fn width(&self) -> usize {
|
||||||
|
self.dim().1
|
||||||
|
}
|
||||||
|
fn height(&self) -> usize {
|
||||||
|
self.dim().0
|
||||||
|
}
|
||||||
|
fn channels(&self) -> usize {
|
||||||
|
self.dim().2
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T, S: RawData<Elem = T>> NdImage for ArrayBase<S, Ix2> {
|
||||||
|
fn width(&self) -> usize {
|
||||||
|
self.dim().1
|
||||||
|
}
|
||||||
|
fn height(&self) -> usize {
|
||||||
|
self.dim().0
|
||||||
|
}
|
||||||
|
fn channels(&self) -> usize {
|
||||||
|
1
|
||||||
|
}
|
||||||
|
}
|
||||||
14
ndcv-bridge/src/inplace.rs
Normal file
14
ndcv-bridge/src/inplace.rs
Normal file
@@ -0,0 +1,14 @@
|
|||||||
|
use opencv::core::Mat;
|
||||||
|
use opencv::prelude::*;
|
||||||
|
use opencv::Result;
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
pub(crate) unsafe fn op_inplace<T>(
|
||||||
|
m: &mut Mat,
|
||||||
|
f: impl FnOnce(&Mat, &mut Mat) -> Result<T>,
|
||||||
|
) -> Result<T> {
|
||||||
|
let mut m_alias = Mat::from_raw(m.as_raw_mut());
|
||||||
|
let out = f(m, &mut m_alias);
|
||||||
|
let _ = m_alias.into_raw();
|
||||||
|
out
|
||||||
|
}
|
||||||
83
ndcv-bridge/src/lib.rs
Normal file
83
ndcv-bridge/src/lib.rs
Normal file
@@ -0,0 +1,83 @@
|
|||||||
|
//! Methods and type conversions for ndarray to opencv and vice versa
|
||||||
|
mod blend;
|
||||||
|
// mod dilate;
|
||||||
|
pub mod fir;
|
||||||
|
mod image;
|
||||||
|
mod inplace;
|
||||||
|
pub mod percentile;
|
||||||
|
mod roi;
|
||||||
|
|
||||||
|
#[cfg(feature = "opencv")]
|
||||||
|
pub mod bounding_rect;
|
||||||
|
// #[cfg(feature = "opencv")]
|
||||||
|
// pub mod color_space;
|
||||||
|
#[cfg(feature = "opencv")]
|
||||||
|
pub mod connected_components;
|
||||||
|
#[cfg(feature = "opencv")]
|
||||||
|
pub mod contours;
|
||||||
|
#[cfg(feature = "opencv")]
|
||||||
|
pub mod conversions;
|
||||||
|
// #[cfg(feature = "opencv")]
|
||||||
|
// pub mod gaussian;
|
||||||
|
#[cfg(feature = "opencv")]
|
||||||
|
pub mod resize;
|
||||||
|
|
||||||
|
pub mod codec;
|
||||||
|
pub mod orient;
|
||||||
|
pub use blend::NdBlend;
|
||||||
|
pub use fast_image_resize::{FilterType, ResizeAlg, ResizeOptions, Resizer};
|
||||||
|
pub use fir::NdFir;
|
||||||
|
// pub use gaussian::{BorderType, NdCvGaussianBlur, NdCvGaussianBlurInPlace};
|
||||||
|
pub use roi::{NdRoi, NdRoiMut, NdRoiZeroPadded};
|
||||||
|
|
||||||
|
#[cfg(feature = "opencv")]
|
||||||
|
pub use contours::{
|
||||||
|
ContourApproximationMethod, ContourHierarchy, ContourResult, ContourRetrievalMode,
|
||||||
|
NdCvContourArea, NdCvFindContours,
|
||||||
|
};
|
||||||
|
|
||||||
|
#[cfg(feature = "opencv")]
|
||||||
|
pub use bounding_rect::BoundingRect;
|
||||||
|
#[cfg(feature = "opencv")]
|
||||||
|
pub use connected_components::{Connectivity, NdCvConnectedComponents};
|
||||||
|
#[cfg(feature = "opencv")]
|
||||||
|
pub use conversions::{MatAsNd, NdAsImage, NdAsImageMut, NdAsMat, NdAsMatMut, NdCvConversion};
|
||||||
|
#[cfg(feature = "opencv")]
|
||||||
|
pub use resize::{Interpolation, NdCvResize};
|
||||||
|
|
||||||
|
pub(crate) mod prelude_ {
|
||||||
|
pub use crate::NdCvError;
|
||||||
|
pub use error_stack::*;
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, thiserror::Error)]
|
||||||
|
#[error("NdCvError")]
|
||||||
|
pub struct NdCvError;
|
||||||
|
|
||||||
|
#[cfg(feature = "opencv")]
|
||||||
|
pub fn type_depth<T>() -> i32 {
|
||||||
|
match std::any::type_name::<T>() {
|
||||||
|
"u8" => opencv::core::CV_8U,
|
||||||
|
"i8" => opencv::core::CV_8S,
|
||||||
|
"u16" => opencv::core::CV_16U,
|
||||||
|
"i16" => opencv::core::CV_16S,
|
||||||
|
"i32" => opencv::core::CV_32S,
|
||||||
|
"f32" => opencv::core::CV_32F,
|
||||||
|
"f64" => opencv::core::CV_64F,
|
||||||
|
_ => panic!("Unsupported type"),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(feature = "opencv")]
|
||||||
|
pub fn depth_type(depth: i32) -> &'static str {
|
||||||
|
match depth {
|
||||||
|
opencv::core::CV_8U => "u8",
|
||||||
|
opencv::core::CV_8S => "i8",
|
||||||
|
opencv::core::CV_16U => "u16",
|
||||||
|
opencv::core::CV_16S => "i16",
|
||||||
|
opencv::core::CV_32S => "i32",
|
||||||
|
opencv::core::CV_32F => "f32",
|
||||||
|
opencv::core::CV_64F => "f64",
|
||||||
|
_ => panic!("Unsupported depth"),
|
||||||
|
}
|
||||||
|
}
|
||||||
188
ndcv-bridge/src/orient.rs
Normal file
188
ndcv-bridge/src/orient.rs
Normal file
@@ -0,0 +1,188 @@
|
|||||||
|
use ndarray::{Array, ArrayBase, ArrayView};
|
||||||
|
|
||||||
|
#[derive(Clone, Copy)]
|
||||||
|
pub enum Orientation {
|
||||||
|
NoRotation,
|
||||||
|
Mirror,
|
||||||
|
Clock180,
|
||||||
|
Water,
|
||||||
|
MirrorClock270,
|
||||||
|
Clock90,
|
||||||
|
MirrorClock90,
|
||||||
|
Clock270,
|
||||||
|
Unknown,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Orientation {
|
||||||
|
pub fn inverse(&self) -> Self {
|
||||||
|
match self {
|
||||||
|
Self::Clock90 => Self::Clock270,
|
||||||
|
Self::Clock270 => Self::Clock90,
|
||||||
|
_ => *self,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Orientation {
|
||||||
|
pub fn from_raw(flip: u8) -> Self {
|
||||||
|
match flip {
|
||||||
|
1 => Orientation::NoRotation,
|
||||||
|
2 => Orientation::Mirror,
|
||||||
|
3 => Orientation::Clock180,
|
||||||
|
4 => Orientation::Water,
|
||||||
|
5 => Orientation::MirrorClock270,
|
||||||
|
6 => Orientation::Clock90,
|
||||||
|
7 => Orientation::MirrorClock90,
|
||||||
|
8 => Orientation::Clock270,
|
||||||
|
_ => Orientation::Unknown,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
||||||
|
pub enum RotationFlag {
|
||||||
|
Clock90,
|
||||||
|
Clock180,
|
||||||
|
Clock270,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl RotationFlag {
|
||||||
|
pub fn neg(&self) -> Self {
|
||||||
|
match self {
|
||||||
|
RotationFlag::Clock90 => RotationFlag::Clock270,
|
||||||
|
RotationFlag::Clock180 => RotationFlag::Clock180,
|
||||||
|
RotationFlag::Clock270 => RotationFlag::Clock90,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn to_orientation(&self) -> Orientation {
|
||||||
|
match self {
|
||||||
|
RotationFlag::Clock90 => Orientation::Clock90,
|
||||||
|
RotationFlag::Clock180 => Orientation::Clock180,
|
||||||
|
RotationFlag::Clock270 => Orientation::Clock270,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Clone, Copy)]
|
||||||
|
pub enum FlipFlag {
|
||||||
|
Mirror,
|
||||||
|
Water,
|
||||||
|
Both,
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait Orient<T: bytemuck::Pod, D: ndarray::Dimension> {
|
||||||
|
fn flip(&self, flip: FlipFlag) -> Array<T, D>;
|
||||||
|
fn rotate(&self, rotation: RotationFlag) -> Array<T, D>;
|
||||||
|
fn owned(&self) -> Array<T, D>;
|
||||||
|
|
||||||
|
fn unorient(&self, orientation: Orientation) -> Array<T, D>
|
||||||
|
where
|
||||||
|
Array<T, D>: Orient<T, D>,
|
||||||
|
Self: ToOwned<Owned = Array<T, D>>,
|
||||||
|
{
|
||||||
|
let inverse_orientation = orientation.inverse();
|
||||||
|
self.orient(inverse_orientation)
|
||||||
|
|
||||||
|
// match orientation {
|
||||||
|
// Orientation::NoRotation | Orientation::Unknown => self.to_owned(),
|
||||||
|
// Orientation::Mirror => self.flip(FlipFlag::Mirror).to_owned(),
|
||||||
|
// Orientation::Clock180 => self.rotate(RotationFlag::Clock180),
|
||||||
|
// Orientation::Water => self.flip(FlipFlag::Water).to_owned(),
|
||||||
|
// Orientation::MirrorClock270 => self
|
||||||
|
// .rotate(RotationFlag::Clock90)
|
||||||
|
// .flip(FlipFlag::Mirror)
|
||||||
|
// .to_owned(),
|
||||||
|
// Orientation::Clock90 => self.rotate(RotationFlag::Clock270),
|
||||||
|
// Orientation::MirrorClock90 => self
|
||||||
|
// .rotate(RotationFlag::Clock270)
|
||||||
|
// .flip(FlipFlag::Mirror)
|
||||||
|
// .to_owned(),
|
||||||
|
// Orientation::Clock270 => self.rotate(RotationFlag::Clock90),
|
||||||
|
// }
|
||||||
|
}
|
||||||
|
|
||||||
|
fn orient(&self, orientation: Orientation) -> Array<T, D>
|
||||||
|
where
|
||||||
|
Array<T, D>: Orient<T, D>,
|
||||||
|
{
|
||||||
|
match orientation {
|
||||||
|
Orientation::NoRotation | Orientation::Unknown => self.owned(),
|
||||||
|
Orientation::Mirror => self.flip(FlipFlag::Mirror).to_owned(),
|
||||||
|
Orientation::Clock180 => self.rotate(RotationFlag::Clock180),
|
||||||
|
Orientation::Water => self.flip(FlipFlag::Water).to_owned(),
|
||||||
|
Orientation::MirrorClock270 => self
|
||||||
|
.flip(FlipFlag::Mirror)
|
||||||
|
.rotate(RotationFlag::Clock270)
|
||||||
|
.to_owned(),
|
||||||
|
Orientation::Clock90 => self.rotate(RotationFlag::Clock90),
|
||||||
|
Orientation::MirrorClock90 => self
|
||||||
|
.flip(FlipFlag::Mirror)
|
||||||
|
.rotate(RotationFlag::Clock90)
|
||||||
|
.to_owned(),
|
||||||
|
Orientation::Clock270 => self.rotate(RotationFlag::Clock270),
|
||||||
|
}
|
||||||
|
.as_standard_layout()
|
||||||
|
.to_owned()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: bytemuck::Pod + Copy, S: ndarray::Data<Elem = T>> Orient<T, ndarray::Ix3>
|
||||||
|
for ArrayBase<S, ndarray::Ix3>
|
||||||
|
{
|
||||||
|
fn flip(&self, flip: FlipFlag) -> Array<T, ndarray::Ix3> {
|
||||||
|
match flip {
|
||||||
|
FlipFlag::Mirror => self.slice(ndarray::s![.., ..;-1, ..]),
|
||||||
|
FlipFlag::Water => self.slice(ndarray::s![..;-1, .., ..]),
|
||||||
|
FlipFlag::Both => self.slice(ndarray::s![..;-1, ..;-1, ..]),
|
||||||
|
}
|
||||||
|
.as_standard_layout()
|
||||||
|
.to_owned()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn owned(&self) -> Array<T, ndarray::Ix3> {
|
||||||
|
self.to_owned()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn rotate(&self, rotation: RotationFlag) -> Array<T, ndarray::Ix3> {
|
||||||
|
match rotation {
|
||||||
|
RotationFlag::Clock90 => self
|
||||||
|
.view()
|
||||||
|
.permuted_axes([1, 0, 2])
|
||||||
|
.flip(FlipFlag::Mirror)
|
||||||
|
.to_owned(),
|
||||||
|
RotationFlag::Clock180 => self.flip(FlipFlag::Both).to_owned(),
|
||||||
|
RotationFlag::Clock270 => self
|
||||||
|
.view()
|
||||||
|
.permuted_axes([1, 0, 2])
|
||||||
|
.flip(FlipFlag::Water)
|
||||||
|
.to_owned(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: bytemuck::Pod + Copy, S: ndarray::Data<Elem = T>> Orient<T, ndarray::Ix2>
|
||||||
|
for ArrayBase<S, ndarray::Ix2>
|
||||||
|
{
|
||||||
|
fn flip(&self, flip: FlipFlag) -> Array<T, ndarray::Ix2> {
|
||||||
|
match flip {
|
||||||
|
FlipFlag::Mirror => self.slice(ndarray::s![.., ..;-1,]),
|
||||||
|
FlipFlag::Water => self.slice(ndarray::s![..;-1, ..,]),
|
||||||
|
FlipFlag::Both => self.slice(ndarray::s![..;-1, ..;-1,]),
|
||||||
|
}
|
||||||
|
.as_standard_layout()
|
||||||
|
.to_owned()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn owned(&self) -> Array<T, ndarray::Ix2> {
|
||||||
|
self.to_owned()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn rotate(&self, rotation: RotationFlag) -> Array<T, ndarray::Ix2> {
|
||||||
|
match rotation {
|
||||||
|
RotationFlag::Clock90 => self.t().flip(FlipFlag::Mirror).to_owned(),
|
||||||
|
RotationFlag::Clock180 => self.flip(FlipFlag::Both).to_owned(),
|
||||||
|
RotationFlag::Clock270 => self.t().flip(FlipFlag::Water).to_owned(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
63
ndcv-bridge/src/percentile.rs
Normal file
63
ndcv-bridge/src/percentile.rs
Normal file
@@ -0,0 +1,63 @@
|
|||||||
|
use error_stack::*;
|
||||||
|
use ndarray::{ArrayBase, Ix1};
|
||||||
|
use num::cast::AsPrimitive;
|
||||||
|
|
||||||
|
use crate::NdCvError;
|
||||||
|
|
||||||
|
pub trait Percentile {
|
||||||
|
fn percentile(&self, qth_percentile: f64) -> Result<f64, NdCvError>;
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: std::cmp::Ord + Clone + AsPrimitive<f64>, S: ndarray::Data<Elem = T>> Percentile
|
||||||
|
for ArrayBase<S, Ix1>
|
||||||
|
{
|
||||||
|
fn percentile(&self, qth_percentile: f64) -> Result<f64, NdCvError> {
|
||||||
|
if self.len() == 0 {
|
||||||
|
return Err(error_stack::Report::new(NdCvError).attach_printable("Empty Input"));
|
||||||
|
}
|
||||||
|
|
||||||
|
if !(0_f64..1_f64).contains(&qth_percentile) {
|
||||||
|
return Err(error_stack::Report::new(NdCvError)
|
||||||
|
.attach_printable("Qth percentile must be between 0 and 1"));
|
||||||
|
}
|
||||||
|
|
||||||
|
let mut standard_array = self.as_standard_layout();
|
||||||
|
let mut raw_data = standard_array
|
||||||
|
.as_slice_mut()
|
||||||
|
.expect("An array in standard layout will always return its inner slice");
|
||||||
|
|
||||||
|
raw_data.sort();
|
||||||
|
|
||||||
|
let actual_index = qth_percentile * (raw_data.len() - 1) as f64;
|
||||||
|
|
||||||
|
let lower_index = (actual_index.floor() as usize).clamp(0, raw_data.len() - 1);
|
||||||
|
let upper_index = (actual_index.ceil() as usize).clamp(0, raw_data.len() - 1);
|
||||||
|
|
||||||
|
if lower_index == upper_index {
|
||||||
|
Ok(raw_data[lower_index].as_())
|
||||||
|
} else {
|
||||||
|
let weight = actual_index - lower_index as f64;
|
||||||
|
Ok(raw_data[lower_index].as_() * (1.0 - weight) + raw_data[upper_index].as_() * weight)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// fn percentile(data: &Array1<f64>, p: f64) -> f64 {
|
||||||
|
// if data.len() == 0 {
|
||||||
|
// return 0.0;
|
||||||
|
// }
|
||||||
|
//
|
||||||
|
// let mut sorted_data = data.to_vec();
|
||||||
|
// sorted_data.sort_by(|a, b| a.partial_cmp(b).unwrap());
|
||||||
|
//
|
||||||
|
// let index = (p / 100.0) * (sorted_data.len() - 1) as f64;
|
||||||
|
// let lower = index.floor() as usize;
|
||||||
|
// let upper = index.ceil() as usize;
|
||||||
|
//
|
||||||
|
// if lower == upper {
|
||||||
|
// sorted_data[lower] as f64
|
||||||
|
// } else {
|
||||||
|
// let weight = index - lower as f64;
|
||||||
|
// sorted_data[lower] as f64 * (1.0 - weight) + sorted_data[upper] as f64 * weight
|
||||||
|
// }
|
||||||
|
// }
|
||||||
108
ndcv-bridge/src/resize.rs
Normal file
108
ndcv-bridge/src/resize.rs
Normal file
@@ -0,0 +1,108 @@
|
|||||||
|
use crate::{prelude_::*, NdAsImage, NdAsImageMut};
|
||||||
|
|
||||||
|
/// Resize ndarray using OpenCV resize functions
|
||||||
|
pub trait NdCvResize<T, D>: seal::SealedInternal {
|
||||||
|
/// The input array must be a continuous 2D or 3D ndarray
|
||||||
|
fn resize(
|
||||||
|
&self,
|
||||||
|
height: u16,
|
||||||
|
width: u16,
|
||||||
|
interpolation: Interpolation,
|
||||||
|
) -> Result<ndarray::ArrayBase<ndarray::OwnedRepr<T>, D>, NdCvError>;
|
||||||
|
}
|
||||||
|
|
||||||
|
#[repr(i32)]
|
||||||
|
#[derive(Debug, Copy, Clone)]
|
||||||
|
pub enum Interpolation {
|
||||||
|
Linear = opencv::imgproc::INTER_LINEAR,
|
||||||
|
LinearExact = opencv::imgproc::INTER_LINEAR_EXACT,
|
||||||
|
Max = opencv::imgproc::INTER_MAX,
|
||||||
|
Area = opencv::imgproc::INTER_AREA,
|
||||||
|
Cubic = opencv::imgproc::INTER_CUBIC,
|
||||||
|
Nearest = opencv::imgproc::INTER_NEAREST,
|
||||||
|
NearestExact = opencv::imgproc::INTER_NEAREST_EXACT,
|
||||||
|
Lanczos4 = opencv::imgproc::INTER_LANCZOS4,
|
||||||
|
}
|
||||||
|
|
||||||
|
mod seal {
|
||||||
|
pub trait SealedInternal {}
|
||||||
|
impl<T: bytemuck::Pod, S: ndarray::Data<Elem = T>> SealedInternal
|
||||||
|
for ndarray::ArrayBase<S, ndarray::Ix3>
|
||||||
|
{
|
||||||
|
}
|
||||||
|
impl<T: bytemuck::Pod, S: ndarray::Data<Elem = T>> SealedInternal
|
||||||
|
for ndarray::ArrayBase<S, ndarray::Ix2>
|
||||||
|
{
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: bytemuck::Pod + num::Zero, S: ndarray::Data<Elem = T>> NdCvResize<T, ndarray::Ix2>
|
||||||
|
for ndarray::ArrayBase<S, ndarray::Ix2>
|
||||||
|
{
|
||||||
|
fn resize(
|
||||||
|
&self,
|
||||||
|
height: u16,
|
||||||
|
width: u16,
|
||||||
|
interpolation: Interpolation,
|
||||||
|
) -> Result<ndarray::Array2<T>, NdCvError> {
|
||||||
|
let mat = self.as_image_mat()?;
|
||||||
|
let mut dest = ndarray::Array2::zeros((height.into(), width.into()));
|
||||||
|
let mut dest_mat = dest.as_image_mat_mut()?;
|
||||||
|
opencv::imgproc::resize(
|
||||||
|
mat.as_ref(),
|
||||||
|
dest_mat.as_mut(),
|
||||||
|
opencv::core::Size {
|
||||||
|
height: height.into(),
|
||||||
|
width: width.into(),
|
||||||
|
},
|
||||||
|
0.,
|
||||||
|
0.,
|
||||||
|
interpolation as i32,
|
||||||
|
)
|
||||||
|
.change_context(NdCvError)?;
|
||||||
|
Ok(dest)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: bytemuck::Pod + num::Zero, S: ndarray::Data<Elem = T>> NdCvResize<T, ndarray::Ix3>
|
||||||
|
for ndarray::ArrayBase<S, ndarray::Ix3>
|
||||||
|
{
|
||||||
|
fn resize(
|
||||||
|
&self,
|
||||||
|
height: u16,
|
||||||
|
width: u16,
|
||||||
|
interpolation: Interpolation,
|
||||||
|
) -> Result<ndarray::ArrayBase<ndarray::OwnedRepr<T>, ndarray::Ix3>, NdCvError> {
|
||||||
|
let mat = self.as_image_mat()?;
|
||||||
|
let mut dest =
|
||||||
|
ndarray::Array3::zeros((height.into(), width.into(), self.len_of(ndarray::Axis(2))));
|
||||||
|
let mut dest_mat = dest.as_image_mat_mut()?;
|
||||||
|
opencv::imgproc::resize(
|
||||||
|
mat.as_ref(),
|
||||||
|
dest_mat.as_mut(),
|
||||||
|
opencv::core::Size {
|
||||||
|
height: height.into(),
|
||||||
|
width: width.into(),
|
||||||
|
},
|
||||||
|
0.,
|
||||||
|
0.,
|
||||||
|
interpolation as i32,
|
||||||
|
)
|
||||||
|
.change_context(NdCvError)?;
|
||||||
|
Ok(dest)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_resize_simple() {
|
||||||
|
let foo = ndarray::Array2::<u8>::ones((10, 10));
|
||||||
|
let foo_resized = foo.resize(15, 20, Interpolation::Linear).unwrap();
|
||||||
|
assert_eq!(foo_resized, ndarray::Array2::<u8>::ones((15, 20)));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_resize_3d() {
|
||||||
|
let foo = ndarray::Array3::<u8>::ones((10, 10, 3));
|
||||||
|
let foo_resized = foo.resize(15, 20, Interpolation::Linear).unwrap();
|
||||||
|
assert_eq!(foo_resized, ndarray::Array3::<u8>::ones((15, 20, 3)));
|
||||||
|
}
|
||||||
274
ndcv-bridge/src/roi.rs
Normal file
274
ndcv-bridge/src/roi.rs
Normal file
@@ -0,0 +1,274 @@
|
|||||||
|
pub trait NdRoi<T, D>: seal::Sealed {
|
||||||
|
fn roi(&self, rect: bounding_box::Aabb2<usize>) -> ndarray::ArrayView<T, D>;
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait NdRoiMut<T, D>: seal::Sealed {
|
||||||
|
fn roi_mut(&mut self, rect: bounding_box::Aabb2<usize>) -> ndarray::ArrayViewMut<T, D>;
|
||||||
|
}
|
||||||
|
|
||||||
|
mod seal {
|
||||||
|
use ndarray::{Ix2, Ix3};
|
||||||
|
pub trait Sealed {}
|
||||||
|
impl<T: bytemuck::Pod, S: ndarray::Data<Elem = T>> Sealed for ndarray::ArrayBase<S, Ix2> {}
|
||||||
|
impl<T: bytemuck::Pod, S: ndarray::Data<Elem = T>> Sealed for ndarray::ArrayBase<S, Ix3> {}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: bytemuck::Pod, S: ndarray::Data<Elem = T>> NdRoi<T, ndarray::Ix3>
|
||||||
|
for ndarray::ArrayBase<S, ndarray::Ix3>
|
||||||
|
{
|
||||||
|
fn roi(&self, rect: bounding_box::Aabb2<usize>) -> ndarray::ArrayView3<T> {
|
||||||
|
let y1 = rect.y1();
|
||||||
|
let y2 = rect.y2();
|
||||||
|
let x1 = rect.x1();
|
||||||
|
let x2 = rect.x2();
|
||||||
|
self.slice(ndarray::s![y1..y2, x1..x2, ..])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: bytemuck::Pod, S: ndarray::DataMut<Elem = T>> NdRoiMut<T, ndarray::Ix3>
|
||||||
|
for ndarray::ArrayBase<S, ndarray::Ix3>
|
||||||
|
{
|
||||||
|
fn roi_mut(&mut self, rect: bounding_box::Aabb2<usize>) -> ndarray::ArrayViewMut3<T> {
|
||||||
|
let y1 = rect.y1();
|
||||||
|
let y2 = rect.y2();
|
||||||
|
let x1 = rect.x1();
|
||||||
|
let x2 = rect.x2();
|
||||||
|
self.slice_mut(ndarray::s![y1..y2, x1..x2, ..])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: bytemuck::Pod, S: ndarray::Data<Elem = T>> NdRoi<T, ndarray::Ix2>
|
||||||
|
for ndarray::ArrayBase<S, ndarray::Ix2>
|
||||||
|
{
|
||||||
|
fn roi(&self, rect: bounding_box::Aabb2<usize>) -> ndarray::ArrayView2<T> {
|
||||||
|
let y1 = rect.y1();
|
||||||
|
let y2 = rect.y2();
|
||||||
|
let x1 = rect.x1();
|
||||||
|
let x2 = rect.x2();
|
||||||
|
self.slice(ndarray::s![y1..y2, x1..x2])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: bytemuck::Pod, S: ndarray::DataMut<Elem = T>> NdRoiMut<T, ndarray::Ix2>
|
||||||
|
for ndarray::ArrayBase<S, ndarray::Ix2>
|
||||||
|
{
|
||||||
|
fn roi_mut(&mut self, rect: bounding_box::Aabb2<usize>) -> ndarray::ArrayViewMut2<T> {
|
||||||
|
let y1 = rect.y1();
|
||||||
|
let y2 = rect.y2();
|
||||||
|
let x1 = rect.x1();
|
||||||
|
let x2 = rect.x2();
|
||||||
|
self.slice_mut(ndarray::s![y1..y2, x1..x2])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_roi() {
|
||||||
|
let arr = ndarray::Array3::<u8>::zeros((10, 10, 3));
|
||||||
|
let rect = bounding_box::Aabb2::from_xywh(1, 1, 3, 3);
|
||||||
|
let roi = arr.roi(rect);
|
||||||
|
assert_eq!(roi.shape(), &[3, 3, 3]);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_roi_2d() {
|
||||||
|
let arr = ndarray::Array2::<u8>::zeros((10, 10));
|
||||||
|
let rect = bounding_box::Aabb2::from_xywh(1, 1, 3, 3);
|
||||||
|
let roi = arr.roi(rect);
|
||||||
|
assert_eq!(roi.shape(), &[3, 3]);
|
||||||
|
}
|
||||||
|
|
||||||
|
/// ```text
|
||||||
|
/// ┌──────────────────┐
|
||||||
|
/// │ padded │
|
||||||
|
/// │ ┌────────┐ │
|
||||||
|
/// │ │ │ │
|
||||||
|
/// │ │original│ │
|
||||||
|
/// │ │ │ │
|
||||||
|
/// │ └────────┘ │
|
||||||
|
/// │ zeroed │
|
||||||
|
/// └──────────────────┘
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
/// Returns the padded bounding box and the padded segment
|
||||||
|
/// The padded is the padded bounding box
|
||||||
|
/// The original is the original bounding box
|
||||||
|
/// Returns the padded bounding box as zeros and the original bbox as the original segment
|
||||||
|
// Helper functions for missing methods from old bbox crate
|
||||||
|
fn bbox_top_left_usize(bbox: &bounding_box::Aabb2<usize>) -> (usize, usize) {
|
||||||
|
(bbox.x1(), bbox.y1())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn bbox_with_top_left_usize(
|
||||||
|
bbox: &bounding_box::Aabb2<usize>,
|
||||||
|
x: usize,
|
||||||
|
y: usize,
|
||||||
|
) -> bounding_box::Aabb2<usize> {
|
||||||
|
let width = bbox.x2() - bbox.x1();
|
||||||
|
let height = bbox.y2() - bbox.y1();
|
||||||
|
bounding_box::Aabb2::from_xywh(x, y, width, height)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn bbox_with_origin_usize(point: (usize, usize), origin: (usize, usize)) -> (usize, usize) {
|
||||||
|
(point.0 - origin.0, point.1 - origin.1)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn bbox_zeros_ndarray_2d<T: num::Zero + Copy>(
|
||||||
|
bbox: &bounding_box::Aabb2<usize>,
|
||||||
|
) -> ndarray::Array2<T> {
|
||||||
|
let width = bbox.x2() - bbox.x1();
|
||||||
|
let height = bbox.y2() - bbox.y1();
|
||||||
|
ndarray::Array2::<T>::zeros((height, width))
|
||||||
|
}
|
||||||
|
|
||||||
|
fn bbox_zeros_ndarray_3d<T: num::Zero + Copy>(
|
||||||
|
bbox: &bounding_box::Aabb2<usize>,
|
||||||
|
channels: usize,
|
||||||
|
) -> ndarray::Array3<T> {
|
||||||
|
let width = bbox.x2() - bbox.x1();
|
||||||
|
let height = bbox.y2() - bbox.y1();
|
||||||
|
ndarray::Array3::<T>::zeros((height, width, channels))
|
||||||
|
}
|
||||||
|
|
||||||
|
fn bbox_round_f64(bbox: &bounding_box::Aabb2<f64>) -> bounding_box::Aabb2<f64> {
|
||||||
|
let x1 = bbox.x1().round();
|
||||||
|
let y1 = bbox.y1().round();
|
||||||
|
let x2 = bbox.x2().round();
|
||||||
|
let y2 = bbox.y2().round();
|
||||||
|
bounding_box::Aabb2::from_x1y1x2y2(x1, y1, x2, y2)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn bbox_cast_f64_to_usize(bbox: &bounding_box::Aabb2<f64>) -> bounding_box::Aabb2<usize> {
|
||||||
|
let x1 = bbox.x1() as usize;
|
||||||
|
let y1 = bbox.y1() as usize;
|
||||||
|
let x2 = bbox.x2() as usize;
|
||||||
|
let y2 = bbox.y2() as usize;
|
||||||
|
bounding_box::Aabb2::from_x1y1x2y2(x1, y1, x2, y2)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub trait NdRoiZeroPadded<T, D: ndarray::Dimension>: seal::Sealed {
|
||||||
|
fn roi_zero_padded(
|
||||||
|
&self,
|
||||||
|
original: bounding_box::Aabb2<usize>,
|
||||||
|
padded: bounding_box::Aabb2<usize>,
|
||||||
|
) -> (bounding_box::Aabb2<usize>, ndarray::Array<T, D>);
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: bytemuck::Pod + num::Zero> NdRoiZeroPadded<T, ndarray::Ix2> for ndarray::Array2<T> {
|
||||||
|
fn roi_zero_padded(
|
||||||
|
&self,
|
||||||
|
original: bounding_box::Aabb2<usize>,
|
||||||
|
padded: bounding_box::Aabb2<usize>,
|
||||||
|
) -> (bounding_box::Aabb2<usize>, ndarray::Array2<T>) {
|
||||||
|
// The co-ordinates of both the original and the padded bounding boxes must be contained in
|
||||||
|
// self or it will panic
|
||||||
|
|
||||||
|
let self_bbox = bounding_box::Aabb2::from_xywh(0, 0, self.shape()[1], self.shape()[0]);
|
||||||
|
if !self_bbox.contains_bbox(&original) {
|
||||||
|
panic!("original bounding box is not contained in self");
|
||||||
|
}
|
||||||
|
if !self_bbox.contains_bbox(&padded) {
|
||||||
|
panic!("padded bounding box is not contained in self");
|
||||||
|
}
|
||||||
|
|
||||||
|
let original_top_left = bbox_top_left_usize(&original);
|
||||||
|
let padded_top_left = bbox_top_left_usize(&padded);
|
||||||
|
let origin_offset = bbox_with_origin_usize(original_top_left, padded_top_left);
|
||||||
|
let original_roi_in_padded =
|
||||||
|
bbox_with_top_left_usize(&original, origin_offset.0, origin_offset.1);
|
||||||
|
|
||||||
|
let original_segment = self.roi(original);
|
||||||
|
let mut padded_segment = bbox_zeros_ndarray_2d::<T>(&padded);
|
||||||
|
padded_segment
|
||||||
|
.roi_mut(original_roi_in_padded)
|
||||||
|
.assign(&original_segment);
|
||||||
|
|
||||||
|
(padded, padded_segment)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T: bytemuck::Pod + num::Zero> NdRoiZeroPadded<T, ndarray::Ix3> for ndarray::Array3<T> {
|
||||||
|
fn roi_zero_padded(
|
||||||
|
&self,
|
||||||
|
original: bounding_box::Aabb2<usize>,
|
||||||
|
padded: bounding_box::Aabb2<usize>,
|
||||||
|
) -> (bounding_box::Aabb2<usize>, ndarray::Array3<T>) {
|
||||||
|
let self_bbox = bounding_box::Aabb2::from_xywh(0, 0, self.shape()[1], self.shape()[0]);
|
||||||
|
if !self_bbox.contains_bbox(&original) {
|
||||||
|
panic!("original bounding box is not contained in self");
|
||||||
|
}
|
||||||
|
if !self_bbox.contains_bbox(&padded) {
|
||||||
|
panic!("padded bounding box is not contained in self");
|
||||||
|
}
|
||||||
|
|
||||||
|
let original_top_left = bbox_top_left_usize(&original);
|
||||||
|
let padded_top_left = bbox_top_left_usize(&padded);
|
||||||
|
let origin_offset = bbox_with_origin_usize(original_top_left, padded_top_left);
|
||||||
|
let original_roi_in_padded =
|
||||||
|
bbox_with_top_left_usize(&original, origin_offset.0, origin_offset.1);
|
||||||
|
|
||||||
|
let original_segment = self.roi(original);
|
||||||
|
let mut padded_segment = bbox_zeros_ndarray_3d::<T>(&padded, self.len_of(ndarray::Axis(2)));
|
||||||
|
padded_segment
|
||||||
|
.roi_mut(original_roi_in_padded)
|
||||||
|
.assign(&original_segment);
|
||||||
|
|
||||||
|
(padded, padded_segment)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_roi_zero_padded() {
|
||||||
|
let arr = ndarray::Array2::<u8>::ones((10, 10));
|
||||||
|
let original = bounding_box::Aabb2::from_xywh(1.0, 1.0, 3.0, 3.0);
|
||||||
|
let clamp = bounding_box::Aabb2::from_xywh(0.0, 0.0, 10.0, 10.0);
|
||||||
|
let padded = original.padding(2.0).clamp(&clamp).unwrap();
|
||||||
|
let padded_cast = bbox_cast_f64_to_usize(&padded);
|
||||||
|
let original_cast = bbox_cast_f64_to_usize(&original);
|
||||||
|
let (padded_result, padded_segment) = arr.roi_zero_padded(original_cast, padded_cast);
|
||||||
|
assert_eq!(padded_result, bounding_box::Aabb2::from_xywh(0, 0, 6, 6));
|
||||||
|
assert_eq!(padded_segment.shape(), &[6, 6]);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
pub fn bbox_clamp_failure_preload() {
|
||||||
|
let segment_mask = ndarray::Array2::<u8>::zeros((512, 512));
|
||||||
|
let og = bounding_box::Aabb2::from_xywh(475.0, 79.625, 37.0, 282.15);
|
||||||
|
let clamp = bounding_box::Aabb2::from_xywh(0.0, 0.0, 512.0, 512.0);
|
||||||
|
let padded = og
|
||||||
|
.scale(nalgebra::Vector2::new(1.2, 1.2))
|
||||||
|
.clamp(&clamp)
|
||||||
|
.unwrap();
|
||||||
|
let padded = bbox_round_f64(&padded);
|
||||||
|
let og_cast = bbox_cast_f64_to_usize(&bbox_round_f64(&og));
|
||||||
|
let padded_cast = bbox_cast_f64_to_usize(&padded);
|
||||||
|
let (_bbox, _segment) = segment_mask.roi_zero_padded(og_cast, padded_cast);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
pub fn bbox_clamp_failure_preload_2() {
|
||||||
|
let segment_mask = ndarray::Array2::<u8>::zeros((512, 512));
|
||||||
|
let bbox = bounding_box::Aabb2::from_xywh(354.25, 98.5, 116.25, 413.5);
|
||||||
|
// let padded = bounding_box::Aabb2::from_xywh(342.625, 57.150000000000006, 139.5, 454.85);
|
||||||
|
let clamp = bounding_box::Aabb2::from_xywh(0.0, 0.0, 512.0, 512.0);
|
||||||
|
let padded = bbox
|
||||||
|
.scale(nalgebra::Vector2::new(1.2, 1.2))
|
||||||
|
.clamp(&clamp)
|
||||||
|
.unwrap();
|
||||||
|
let padded = bbox_round_f64(&padded);
|
||||||
|
let bbox_cast = bbox_cast_f64_to_usize(&bbox_round_f64(&bbox));
|
||||||
|
let padded_cast = bbox_cast_f64_to_usize(&padded);
|
||||||
|
let (_bbox, _segment) = segment_mask.roi_zero_padded(bbox_cast, padded_cast);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_roi_zero_padded_3d() {
|
||||||
|
let arr = ndarray::Array3::<u8>::ones((10, 10, 3));
|
||||||
|
let original = bounding_box::Aabb2::from_xywh(1.0, 1.0, 3.0, 3.0);
|
||||||
|
let clamp = bounding_box::Aabb2::from_xywh(0.0, 0.0, 10.0, 10.0);
|
||||||
|
let padded = original.padding(2.0).clamp(&clamp).unwrap();
|
||||||
|
let padded_cast = bbox_cast_f64_to_usize(&padded);
|
||||||
|
let original_cast = bbox_cast_f64_to_usize(&original);
|
||||||
|
let (padded_result, padded_segment) = arr.roi_zero_padded(original_cast, padded_cast);
|
||||||
|
assert_eq!(padded_result, bounding_box::Aabb2::from_xywh(0, 0, 6, 6));
|
||||||
|
assert_eq!(padded_segment.shape(), &[6, 6, 3]);
|
||||||
|
}
|
||||||
42
patches/ort_env_global_mutex.patch
Normal file
42
patches/ort_env_global_mutex.patch
Normal file
@@ -0,0 +1,42 @@
|
|||||||
|
From 83e1dbf52b7695a2966795e0350aaa385d1ba8c8 Mon Sep 17 00:00:00 2001
|
||||||
|
From: "Carson M." <carson@pyke.io>
|
||||||
|
Date: Sun, 22 Jun 2025 23:53:20 -0500
|
||||||
|
Subject: [PATCH] Leak logger mutex
|
||||||
|
|
||||||
|
---
|
||||||
|
onnxruntime/core/common/logging/logging.cc | 8 ++++----
|
||||||
|
1 file changed, 4 insertions(+), 4 deletions(-)
|
||||||
|
|
||||||
|
diff --git a/onnxruntime/core/common/logging/logging.cc b/onnxruntime/core/common/logging/logging.cc
|
||||||
|
index a79e7300cffce..07578fc72ca99 100644
|
||||||
|
--- a/onnxruntime/core/common/logging/logging.cc
|
||||||
|
+++ b/onnxruntime/core/common/logging/logging.cc
|
||||||
|
@@ -64,8 +64,8 @@ LoggingManager* LoggingManager::GetDefaultInstance() {
|
||||||
|
#pragma warning(disable : 26426)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
-static std::mutex& DefaultLoggerMutex() noexcept {
|
||||||
|
- static std::mutex mutex;
|
||||||
|
+static std::mutex* DefaultLoggerMutex() noexcept {
|
||||||
|
+ static std::mutex* mutex = new std::mutex();
|
||||||
|
return mutex;
|
||||||
|
}
|
||||||
|
|
||||||
|
@@ -107,7 +107,7 @@ LoggingManager::LoggingManager(std::unique_ptr<ISink> sink, Severity default_min
|
||||||
|
|
||||||
|
// lock mutex to create instance, and enable logging
|
||||||
|
// this matches the mutex usage in Shutdown
|
||||||
|
- std::lock_guard<std::mutex> guard(DefaultLoggerMutex());
|
||||||
|
+ std::lock_guard<std::mutex> guard(*DefaultLoggerMutex());
|
||||||
|
|
||||||
|
if (DefaultLoggerManagerInstance().load() != nullptr) {
|
||||||
|
ORT_THROW("Only one instance of LoggingManager created with InstanceType::Default can exist at any point in time.");
|
||||||
|
@@ -127,7 +127,7 @@ LoggingManager::LoggingManager(std::unique_ptr<ISink> sink, Severity default_min
|
||||||
|
LoggingManager::~LoggingManager() {
|
||||||
|
if (owns_default_logger_) {
|
||||||
|
// lock mutex to reset DefaultLoggerManagerInstance() and free default logger from this instance.
|
||||||
|
- std::lock_guard<std::mutex> guard(DefaultLoggerMutex());
|
||||||
|
+ std::lock_guard<std::mutex> guard(*DefaultLoggerMutex());
|
||||||
|
#if ((__cplusplus >= 201703L) || (defined(_MSVC_LANG) && (_MSVC_LANG >= 201703L)))
|
||||||
|
DefaultLoggerManagerInstance().store(nullptr, std::memory_order_release);
|
||||||
|
#else
|
||||||
1
rfcs
1
rfcs
Submodule rfcs deleted from c973203daf
14
sqlite3-ndarray-math/Cargo.toml
Normal file
14
sqlite3-ndarray-math/Cargo.toml
Normal file
@@ -0,0 +1,14 @@
|
|||||||
|
[package]
|
||||||
|
name = "sqlite3-ndarray-math"
|
||||||
|
version.workspace = true
|
||||||
|
edition.workspace = true
|
||||||
|
|
||||||
|
[lib]
|
||||||
|
crate-type = ["cdylib", "staticlib"]
|
||||||
|
|
||||||
|
[dependencies]
|
||||||
|
ndarray = "0.16.1"
|
||||||
|
ndarray-math = { git = "https://git.darksailor.dev/servius/ndarray-math", version = "0.1.0" }
|
||||||
|
# ndarray-math = { path = "/Users/fs0c131y/Projects/ndarray-math", version = "0.1.0" }
|
||||||
|
ndarray-safetensors = { version = "0.1.0", path = "../ndarray-safetensors" }
|
||||||
|
sqlite-loadable = "0.0.5"
|
||||||
61
sqlite3-ndarray-math/src/lib.rs
Normal file
61
sqlite3-ndarray-math/src/lib.rs
Normal file
@@ -0,0 +1,61 @@
|
|||||||
|
use sqlite_loadable::prelude::*;
|
||||||
|
use sqlite_loadable::{Error, ErrorKind};
|
||||||
|
use sqlite_loadable::{Result, api, define_scalar_function};
|
||||||
|
|
||||||
|
fn cosine_similarity(context: *mut sqlite3_context, values: &[*mut sqlite3_value]) -> Result<()> {
|
||||||
|
#[inline(always)]
|
||||||
|
fn custom_error(err: impl core::error::Error) -> sqlite_loadable::Error {
|
||||||
|
sqlite_loadable::Error::new(sqlite_loadable::ErrorKind::Message(err.to_string()))
|
||||||
|
}
|
||||||
|
|
||||||
|
if values.len() != 2 {
|
||||||
|
return Err(Error::new(ErrorKind::Message(
|
||||||
|
"cosine_similarity requires exactly 2 arguments".to_string(),
|
||||||
|
)));
|
||||||
|
}
|
||||||
|
let array_1 = api::value_blob(values.get(0).expect("1st argument"));
|
||||||
|
let array_2 = api::value_blob(values.get(1).expect("2nd argument"));
|
||||||
|
let array_1_st =
|
||||||
|
ndarray_safetensors::SafeArraysView::from_bytes(array_1).map_err(custom_error)?;
|
||||||
|
let array_2_st =
|
||||||
|
ndarray_safetensors::SafeArraysView::from_bytes(array_2).map_err(custom_error)?;
|
||||||
|
|
||||||
|
let array_view_1 = array_1_st
|
||||||
|
.tensor_by_index::<f32, ndarray::Ix1>(0)
|
||||||
|
.map_err(custom_error)?;
|
||||||
|
let array_view_2 = array_2_st
|
||||||
|
.tensor_by_index::<f32, ndarray::Ix1>(0)
|
||||||
|
.map_err(custom_error)?;
|
||||||
|
|
||||||
|
use ndarray_math::*;
|
||||||
|
let similarity = array_view_1
|
||||||
|
.cosine_similarity(array_view_2)
|
||||||
|
.map_err(custom_error)?;
|
||||||
|
api::result_double(context, similarity as f64);
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn _sqlite3_extension_init(db: *mut sqlite3) -> Result<()> {
|
||||||
|
define_scalar_function(
|
||||||
|
db,
|
||||||
|
"cosine_similarity",
|
||||||
|
2,
|
||||||
|
cosine_similarity,
|
||||||
|
FunctionFlags::DETERMINISTIC,
|
||||||
|
)?;
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// # Safety
|
||||||
|
///
|
||||||
|
/// Should only be called by underlying SQLite C APIs,
|
||||||
|
/// like sqlite3_auto_extension and sqlite3_cancel_auto_extension.
|
||||||
|
#[unsafe(no_mangle)]
|
||||||
|
pub unsafe extern "C" fn sqlite3_extension_init(
|
||||||
|
db: *mut sqlite3,
|
||||||
|
pz_err_msg: *mut *mut c_char,
|
||||||
|
p_api: *mut sqlite3_api_routines,
|
||||||
|
) -> c_uint {
|
||||||
|
register_entrypoint(db, pz_err_msg, p_api, _sqlite3_extension_init)
|
||||||
|
}
|
||||||
213
src/bin/detector-cli/cli.rs
Normal file
213
src/bin/detector-cli/cli.rs
Normal file
@@ -0,0 +1,213 @@
|
|||||||
|
use detector::ort_ep;
|
||||||
|
use std::path::PathBuf;
|
||||||
|
|
||||||
|
#[derive(Debug, clap::Parser)]
|
||||||
|
pub struct Cli {
|
||||||
|
#[clap(subcommand)]
|
||||||
|
pub cmd: SubCommand,
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, clap::Subcommand)]
|
||||||
|
pub enum SubCommand {
|
||||||
|
#[clap(name = "detect")]
|
||||||
|
Detect(Detect),
|
||||||
|
#[clap(name = "detect-multi")]
|
||||||
|
DetectMulti(DetectMulti),
|
||||||
|
#[clap(name = "query")]
|
||||||
|
Query(Query),
|
||||||
|
#[clap(name = "similar")]
|
||||||
|
Similar(Similar),
|
||||||
|
#[clap(name = "stats")]
|
||||||
|
Stats(Stats),
|
||||||
|
#[clap(name = "compare")]
|
||||||
|
Compare(Compare),
|
||||||
|
#[clap(name = "cluster")]
|
||||||
|
Cluster(Cluster),
|
||||||
|
#[clap(name = "gui")]
|
||||||
|
Gui,
|
||||||
|
#[clap(name = "completions")]
|
||||||
|
Completions { shell: clap_complete::Shell },
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, clap::ValueEnum, Clone, Copy, PartialEq)]
|
||||||
|
pub enum Models {
|
||||||
|
RetinaFace,
|
||||||
|
Yolo,
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub enum Executor {
|
||||||
|
Mnn(mnn::ForwardType),
|
||||||
|
Ort(Vec<ort_ep::ExecutionProvider>),
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, clap::Args)]
|
||||||
|
pub struct Detect {
|
||||||
|
#[clap(short, long)]
|
||||||
|
pub model: Option<PathBuf>,
|
||||||
|
#[clap(short = 'M', long, default_value = "retina-face")]
|
||||||
|
pub model_type: Models,
|
||||||
|
#[clap(short, long)]
|
||||||
|
pub output: Option<PathBuf>,
|
||||||
|
#[clap(
|
||||||
|
short = 'p',
|
||||||
|
long,
|
||||||
|
default_value = "cpu",
|
||||||
|
group = "execution_provider",
|
||||||
|
required_unless_present = "mnn_forward_type"
|
||||||
|
)]
|
||||||
|
pub ort_execution_provider: Vec<ort_ep::ExecutionProvider>,
|
||||||
|
#[clap(
|
||||||
|
short = 'f',
|
||||||
|
long,
|
||||||
|
group = "execution_provider",
|
||||||
|
required_unless_present = "ort_execution_provider"
|
||||||
|
)]
|
||||||
|
pub mnn_forward_type: Option<mnn::ForwardType>,
|
||||||
|
#[clap(short, long, default_value_t = 0.8)]
|
||||||
|
pub threshold: f32,
|
||||||
|
#[clap(short, long, default_value_t = 0.3)]
|
||||||
|
pub nms_threshold: f32,
|
||||||
|
#[clap(short, long, default_value_t = 8)]
|
||||||
|
pub batch_size: usize,
|
||||||
|
#[clap(short = 'd', long)]
|
||||||
|
pub database: Option<PathBuf>,
|
||||||
|
#[clap(long, default_value = "facenet")]
|
||||||
|
pub model_name: String,
|
||||||
|
#[clap(long)]
|
||||||
|
pub save_to_db: bool,
|
||||||
|
pub image: PathBuf,
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, clap::Args)]
|
||||||
|
pub struct DetectMulti {
|
||||||
|
#[clap(short, long)]
|
||||||
|
pub model: Option<PathBuf>,
|
||||||
|
#[clap(short = 'M', long, default_value = "retina-face")]
|
||||||
|
pub model_type: Models,
|
||||||
|
#[clap(short, long)]
|
||||||
|
pub output_dir: Option<PathBuf>,
|
||||||
|
#[clap(
|
||||||
|
short = 'p',
|
||||||
|
long,
|
||||||
|
default_value = "cpu",
|
||||||
|
group = "execution_provider",
|
||||||
|
required_unless_present = "mnn_forward_type"
|
||||||
|
)]
|
||||||
|
pub ort_execution_provider: Vec<ort_ep::ExecutionProvider>,
|
||||||
|
#[clap(
|
||||||
|
short = 'f',
|
||||||
|
long,
|
||||||
|
group = "execution_provider",
|
||||||
|
required_unless_present = "ort_execution_provider"
|
||||||
|
)]
|
||||||
|
pub mnn_forward_type: Option<mnn::ForwardType>,
|
||||||
|
#[clap(short, long, default_value_t = 0.8)]
|
||||||
|
pub threshold: f32,
|
||||||
|
#[clap(short, long, default_value_t = 0.3)]
|
||||||
|
pub nms_threshold: f32,
|
||||||
|
#[clap(short, long, default_value_t = 8)]
|
||||||
|
pub batch_size: usize,
|
||||||
|
#[clap(short = 'd', long, default_value = "face_detections.db")]
|
||||||
|
pub database: PathBuf,
|
||||||
|
#[clap(long, default_value = "facenet")]
|
||||||
|
pub model_name: String,
|
||||||
|
#[clap(
|
||||||
|
long,
|
||||||
|
help = "Image extensions to process (e.g., jpg,png,jpeg)",
|
||||||
|
default_value = "jpg,jpeg,png,bmp,tiff,webp"
|
||||||
|
)]
|
||||||
|
pub extensions: String,
|
||||||
|
#[clap(help = "Directory containing images to process")]
|
||||||
|
pub input_dir: PathBuf,
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, clap::Args)]
|
||||||
|
pub struct Query {
|
||||||
|
#[clap(short = 'd', long, default_value = "face_detections.db")]
|
||||||
|
pub database: PathBuf,
|
||||||
|
#[clap(short, long)]
|
||||||
|
pub image_id: Option<i64>,
|
||||||
|
#[clap(short, long)]
|
||||||
|
pub face_id: Option<i64>,
|
||||||
|
#[clap(long)]
|
||||||
|
pub show_embeddings: bool,
|
||||||
|
#[clap(long)]
|
||||||
|
pub show_landmarks: bool,
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, clap::Args)]
|
||||||
|
pub struct Similar {
|
||||||
|
#[clap(short = 'd', long, default_value = "face_detections.db")]
|
||||||
|
pub database: PathBuf,
|
||||||
|
#[clap(short, long)]
|
||||||
|
pub face_id: i64,
|
||||||
|
#[clap(short, long, default_value_t = 0.7)]
|
||||||
|
pub threshold: f32,
|
||||||
|
#[clap(short, long, default_value_t = 10)]
|
||||||
|
pub limit: usize,
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, clap::Args)]
|
||||||
|
pub struct Stats {
|
||||||
|
#[clap(short = 'd', long, default_value = "face_detections.db")]
|
||||||
|
pub database: PathBuf,
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, clap::Args)]
|
||||||
|
pub struct Compare {
|
||||||
|
#[clap(short, long)]
|
||||||
|
pub model: Option<PathBuf>,
|
||||||
|
#[clap(short = 'M', long, default_value = "retina-face")]
|
||||||
|
pub model_type: Models,
|
||||||
|
#[clap(
|
||||||
|
short = 'p',
|
||||||
|
long,
|
||||||
|
default_value = "cpu",
|
||||||
|
group = "execution_provider",
|
||||||
|
required_unless_present = "mnn_forward_type"
|
||||||
|
)]
|
||||||
|
pub ort_execution_provider: Vec<ort_ep::ExecutionProvider>,
|
||||||
|
#[clap(
|
||||||
|
short = 'f',
|
||||||
|
long,
|
||||||
|
group = "execution_provider",
|
||||||
|
required_unless_present = "ort_execution_provider"
|
||||||
|
)]
|
||||||
|
pub mnn_forward_type: Option<mnn::ForwardType>,
|
||||||
|
#[clap(short, long, default_value_t = 0.8)]
|
||||||
|
pub threshold: f32,
|
||||||
|
#[clap(short, long, default_value_t = 0.3)]
|
||||||
|
pub nms_threshold: f32,
|
||||||
|
#[clap(short, long, default_value_t = 8)]
|
||||||
|
pub batch_size: usize,
|
||||||
|
#[clap(long, default_value = "facenet")]
|
||||||
|
pub model_name: String,
|
||||||
|
#[clap(help = "First image to compare")]
|
||||||
|
pub image1: PathBuf,
|
||||||
|
#[clap(help = "Second image to compare")]
|
||||||
|
pub image2: PathBuf,
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, clap::Args)]
|
||||||
|
pub struct Cluster {
|
||||||
|
#[clap(short = 'd', long, default_value = "face_detections.db")]
|
||||||
|
pub database: PathBuf,
|
||||||
|
#[clap(short, long, default_value_t = 5)]
|
||||||
|
pub clusters: usize,
|
||||||
|
#[clap(short, long, default_value_t = 100)]
|
||||||
|
pub max_iterations: u64,
|
||||||
|
#[clap(short, long, default_value_t = 1e-4)]
|
||||||
|
pub tolerance: f64,
|
||||||
|
#[clap(long, default_value = "facenet")]
|
||||||
|
pub model_name: String,
|
||||||
|
#[clap(short, long)]
|
||||||
|
pub output: Option<PathBuf>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Cli {
|
||||||
|
pub fn completions(shell: clap_complete::Shell) {
|
||||||
|
let mut command = <Cli as clap::CommandFactory>::command();
|
||||||
|
clap_complete::generate(shell, &mut command, "detector", &mut std::io::stdout());
|
||||||
|
}
|
||||||
|
}
|
||||||
1063
src/bin/detector-cli/main.rs
Normal file
1063
src/bin/detector-cli/main.rs
Normal file
File diff suppressed because it is too large
Load Diff
19
src/bin/gui.rs
Normal file
19
src/bin/gui.rs
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
use detector::errors::*;
|
||||||
|
fn main() -> Result<()> {
|
||||||
|
// Initialize logging
|
||||||
|
tracing_subscriber::fmt()
|
||||||
|
.with_env_filter("warn,ort=warn")
|
||||||
|
.with_file(true)
|
||||||
|
.with_line_number(true)
|
||||||
|
// .with_thread_names(true)
|
||||||
|
.with_target(true)
|
||||||
|
.init();
|
||||||
|
|
||||||
|
// Run the GUI
|
||||||
|
if let Err(e) = detector::gui::run() {
|
||||||
|
eprintln!("GUI error: {}", e);
|
||||||
|
std::process::exit(1);
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
75
src/cli.rs
75
src/cli.rs
@@ -1,75 +0,0 @@
|
|||||||
use std::path::PathBuf;
|
|
||||||
#[derive(Debug, clap::Parser)]
|
|
||||||
pub struct Cli {
|
|
||||||
#[clap(subcommand)]
|
|
||||||
pub cmd: SubCommand,
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, clap::Subcommand)]
|
|
||||||
pub enum SubCommand {
|
|
||||||
#[clap(name = "detect")]
|
|
||||||
Detect(Detect),
|
|
||||||
#[clap(name = "list")]
|
|
||||||
List(List),
|
|
||||||
#[clap(name = "completions")]
|
|
||||||
Completions { shell: clap_complete::Shell },
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, clap::ValueEnum, Clone, Copy)]
|
|
||||||
pub enum Models {
|
|
||||||
RetinaFace,
|
|
||||||
Yolo,
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, clap::ValueEnum, Clone, Copy)]
|
|
||||||
pub enum Executor {
|
|
||||||
Mnn,
|
|
||||||
Onnx,
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, clap::ValueEnum, Clone, Copy)]
|
|
||||||
pub enum OnnxEp {
|
|
||||||
Cpu,
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, clap::ValueEnum, Clone, Copy)]
|
|
||||||
pub enum MnnEp {
|
|
||||||
Cpu,
|
|
||||||
Metal,
|
|
||||||
OpenCL,
|
|
||||||
CoreML,
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, clap::Args)]
|
|
||||||
pub struct Detect {
|
|
||||||
#[clap(short, long)]
|
|
||||||
pub model: Option<PathBuf>,
|
|
||||||
#[clap(short = 'M', long, default_value = "retina-face")]
|
|
||||||
pub model_type: Models,
|
|
||||||
#[clap(short, long)]
|
|
||||||
pub output: Option<PathBuf>,
|
|
||||||
#[clap(short = 'e', long)]
|
|
||||||
pub executor: Option<Executor>,
|
|
||||||
#[clap(short, long, default_value = "cpu")]
|
|
||||||
pub forward_type: mnn::ForwardType,
|
|
||||||
#[clap(short, long, default_value_t = 0.8)]
|
|
||||||
pub threshold: f32,
|
|
||||||
#[clap(short, long, default_value_t = 0.3)]
|
|
||||||
pub nms_threshold: f32,
|
|
||||||
pub image: PathBuf,
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug, clap::Args)]
|
|
||||||
pub struct List {}
|
|
||||||
|
|
||||||
impl Cli {
|
|
||||||
pub fn completions(shell: clap_complete::Shell) {
|
|
||||||
let mut command = <Cli as clap::CommandFactory>::command();
|
|
||||||
clap_complete::generate(
|
|
||||||
shell,
|
|
||||||
&mut command,
|
|
||||||
env!("CARGO_BIN_NAME"),
|
|
||||||
&mut std::io::stdout(),
|
|
||||||
);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
734
src/database.rs
Normal file
734
src/database.rs
Normal file
@@ -0,0 +1,734 @@
|
|||||||
|
use crate::errors::{Error, Result};
|
||||||
|
use crate::facedet::{FaceDetectionOutput, FaceLandmarks};
|
||||||
|
use bounding_box::Aabb2;
|
||||||
|
use error_stack::ResultExt;
|
||||||
|
use ndarray_math::CosineSimilarity;
|
||||||
|
use rusqlite::{Connection, OptionalExtension, params};
|
||||||
|
use std::path::Path;
|
||||||
|
|
||||||
|
/// Database connection and operations for face detection results
|
||||||
|
pub struct FaceDatabase {
|
||||||
|
conn: Connection,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Represents a stored image record
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct ImageRecord {
|
||||||
|
pub id: i64,
|
||||||
|
pub file_path: String,
|
||||||
|
pub width: u32,
|
||||||
|
pub height: u32,
|
||||||
|
pub created_at: String,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Represents a stored face detection record
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct FaceRecord {
|
||||||
|
pub id: i64,
|
||||||
|
pub image_id: i64,
|
||||||
|
pub bbox_x1: f32,
|
||||||
|
pub bbox_y1: f32,
|
||||||
|
pub bbox_x2: f32,
|
||||||
|
pub bbox_y2: f32,
|
||||||
|
pub confidence: f32,
|
||||||
|
pub created_at: String,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Represents stored face landmarks
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct LandmarkRecord {
|
||||||
|
pub id: i64,
|
||||||
|
pub face_id: i64,
|
||||||
|
pub left_eye_x: f32,
|
||||||
|
pub left_eye_y: f32,
|
||||||
|
pub right_eye_x: f32,
|
||||||
|
pub right_eye_y: f32,
|
||||||
|
pub nose_x: f32,
|
||||||
|
pub nose_y: f32,
|
||||||
|
pub left_mouth_x: f32,
|
||||||
|
pub left_mouth_y: f32,
|
||||||
|
pub right_mouth_x: f32,
|
||||||
|
pub right_mouth_y: f32,
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Represents a stored face embedding
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct EmbeddingRecord {
|
||||||
|
pub id: i64,
|
||||||
|
pub face_id: i64,
|
||||||
|
pub embedding: ndarray::Array1<f32>,
|
||||||
|
pub model_name: String,
|
||||||
|
pub created_at: String,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl FaceDatabase {
|
||||||
|
/// Create a new database connection and initialize tables
|
||||||
|
pub fn new<P: AsRef<Path>>(db_path: P) -> Result<Self> {
|
||||||
|
let conn = Connection::open(db_path).change_context(Error)?;
|
||||||
|
// Temporarily disable extension loading for clustering demo
|
||||||
|
// unsafe {
|
||||||
|
// let _guard = rusqlite::LoadExtensionGuard::new(&conn).change_context(Error)?;
|
||||||
|
// conn.load_extension(
|
||||||
|
// "/Users/fs0c131y/.cache/cargo/target/release/libsqlite3_safetensor_cosine.dylib",
|
||||||
|
// None::<&str>,
|
||||||
|
// )
|
||||||
|
// .change_context(Error)?;
|
||||||
|
// }
|
||||||
|
let db = Self { conn };
|
||||||
|
db.create_tables()?;
|
||||||
|
Ok(db)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create an in-memory database for testing
|
||||||
|
pub fn in_memory() -> Result<Self> {
|
||||||
|
let conn = Connection::open_in_memory().change_context(Error)?;
|
||||||
|
let db = Self { conn };
|
||||||
|
db.create_tables()?;
|
||||||
|
Ok(db)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create all necessary database tables
|
||||||
|
fn create_tables(&self) -> Result<()> {
|
||||||
|
// Images table
|
||||||
|
self.conn
|
||||||
|
.execute(
|
||||||
|
r#"
|
||||||
|
CREATE TABLE IF NOT EXISTS images (
|
||||||
|
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||||
|
file_path TEXT NOT NULL UNIQUE,
|
||||||
|
width INTEGER NOT NULL,
|
||||||
|
height INTEGER NOT NULL,
|
||||||
|
created_at DATETIME DEFAULT CURRENT_TIMESTAMP
|
||||||
|
)
|
||||||
|
"#,
|
||||||
|
[],
|
||||||
|
)
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
// Faces table
|
||||||
|
self.conn
|
||||||
|
.execute(
|
||||||
|
r#"
|
||||||
|
CREATE TABLE IF NOT EXISTS faces (
|
||||||
|
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||||
|
image_id INTEGER NOT NULL,
|
||||||
|
bbox_x1 REAL NOT NULL,
|
||||||
|
bbox_y1 REAL NOT NULL,
|
||||||
|
bbox_x2 REAL NOT NULL,
|
||||||
|
bbox_y2 REAL NOT NULL,
|
||||||
|
confidence REAL NOT NULL,
|
||||||
|
created_at DATETIME DEFAULT CURRENT_TIMESTAMP,
|
||||||
|
FOREIGN KEY (image_id) REFERENCES images (id) ON DELETE CASCADE
|
||||||
|
)
|
||||||
|
"#,
|
||||||
|
[],
|
||||||
|
)
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
// Landmarks table
|
||||||
|
self.conn
|
||||||
|
.execute(
|
||||||
|
r#"
|
||||||
|
CREATE TABLE IF NOT EXISTS landmarks (
|
||||||
|
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||||
|
face_id INTEGER NOT NULL,
|
||||||
|
left_eye_x REAL NOT NULL,
|
||||||
|
left_eye_y REAL NOT NULL,
|
||||||
|
right_eye_x REAL NOT NULL,
|
||||||
|
right_eye_y REAL NOT NULL,
|
||||||
|
nose_x REAL NOT NULL,
|
||||||
|
nose_y REAL NOT NULL,
|
||||||
|
left_mouth_x REAL NOT NULL,
|
||||||
|
left_mouth_y REAL NOT NULL,
|
||||||
|
right_mouth_x REAL NOT NULL,
|
||||||
|
right_mouth_y REAL NOT NULL,
|
||||||
|
FOREIGN KEY (face_id) REFERENCES faces (id) ON DELETE CASCADE
|
||||||
|
)
|
||||||
|
"#,
|
||||||
|
[],
|
||||||
|
)
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
// Embeddings table
|
||||||
|
self.conn
|
||||||
|
.execute(
|
||||||
|
r#"
|
||||||
|
CREATE TABLE IF NOT EXISTS embeddings (
|
||||||
|
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||||
|
face_id INTEGER NOT NULL,
|
||||||
|
embedding BLOB NOT NULL,
|
||||||
|
model_name TEXT NOT NULL,
|
||||||
|
created_at DATETIME DEFAULT CURRENT_TIMESTAMP,
|
||||||
|
FOREIGN KEY (face_id) REFERENCES faces (id) ON DELETE CASCADE
|
||||||
|
)
|
||||||
|
"#,
|
||||||
|
[],
|
||||||
|
)
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
// Create indexes for better performance
|
||||||
|
self.conn
|
||||||
|
.execute(
|
||||||
|
"CREATE INDEX IF NOT EXISTS idx_faces_image_id ON faces (image_id)",
|
||||||
|
[],
|
||||||
|
)
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
self.conn
|
||||||
|
.execute(
|
||||||
|
"CREATE INDEX IF NOT EXISTS idx_landmarks_face_id ON landmarks (face_id)",
|
||||||
|
[],
|
||||||
|
)
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
self.conn
|
||||||
|
.execute(
|
||||||
|
"CREATE INDEX IF NOT EXISTS idx_embeddings_face_id ON embeddings (face_id)",
|
||||||
|
[],
|
||||||
|
)
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Store image metadata and return the image ID
|
||||||
|
pub fn store_image(&self, file_path: &str, width: u32, height: u32) -> Result<i64> {
|
||||||
|
let mut stmt = self
|
||||||
|
.conn
|
||||||
|
.prepare("INSERT OR REPLACE INTO images (file_path, width, height) VALUES (?1, ?2, ?3)")
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
Ok(stmt
|
||||||
|
.insert(params![file_path, width, height])
|
||||||
|
.change_context(Error)?)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Store face detection results
|
||||||
|
pub fn store_face_detections(
|
||||||
|
&self,
|
||||||
|
image_id: i64,
|
||||||
|
detection_output: &FaceDetectionOutput,
|
||||||
|
) -> Result<Vec<i64>> {
|
||||||
|
let mut face_ids = Vec::new();
|
||||||
|
|
||||||
|
for (i, bbox) in detection_output.bbox.iter().enumerate() {
|
||||||
|
let confidence = detection_output.confidence.get(i).copied().unwrap_or(0.0);
|
||||||
|
|
||||||
|
let face_id = self.store_face(image_id, bbox, confidence)?;
|
||||||
|
face_ids.push(face_id);
|
||||||
|
|
||||||
|
// Store landmarks if available
|
||||||
|
if let Some(landmarks) = detection_output.landmark.get(i) {
|
||||||
|
self.store_landmarks(face_id, landmarks)?;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(face_ids)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Store a single face detection
|
||||||
|
pub fn store_face(&self, image_id: i64, bbox: &Aabb2<usize>, confidence: f32) -> Result<i64> {
|
||||||
|
let mut stmt = self
|
||||||
|
.conn
|
||||||
|
.prepare(
|
||||||
|
r#"
|
||||||
|
INSERT INTO faces (image_id, bbox_x1, bbox_y1, bbox_x2, bbox_y2, confidence)
|
||||||
|
VALUES (?1, ?2, ?3, ?4, ?5, ?6)
|
||||||
|
"#,
|
||||||
|
)
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
Ok(stmt
|
||||||
|
.insert(params![
|
||||||
|
image_id,
|
||||||
|
bbox.x1() as f32,
|
||||||
|
bbox.y1() as f32,
|
||||||
|
bbox.x2() as f32,
|
||||||
|
bbox.y2() as f32,
|
||||||
|
confidence
|
||||||
|
])
|
||||||
|
.change_context(Error)?)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Store face landmarks
|
||||||
|
pub fn store_landmarks(&self, face_id: i64, landmarks: &FaceLandmarks) -> Result<i64> {
|
||||||
|
let mut stmt = self
|
||||||
|
.conn
|
||||||
|
.prepare(
|
||||||
|
r#"
|
||||||
|
INSERT INTO landmarks
|
||||||
|
(face_id, left_eye_x, left_eye_y, right_eye_x, right_eye_y,
|
||||||
|
nose_x, nose_y, left_mouth_x, left_mouth_y, right_mouth_x, right_mouth_y)
|
||||||
|
VALUES (?1, ?2, ?3, ?4, ?5, ?6, ?7, ?8, ?9, ?10, ?11)
|
||||||
|
"#,
|
||||||
|
)
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
Ok(stmt
|
||||||
|
.insert(params![
|
||||||
|
face_id,
|
||||||
|
landmarks.left_eye.x,
|
||||||
|
landmarks.left_eye.y,
|
||||||
|
landmarks.right_eye.x,
|
||||||
|
landmarks.right_eye.y,
|
||||||
|
landmarks.nose.x,
|
||||||
|
landmarks.nose.y,
|
||||||
|
landmarks.left_mouth.x,
|
||||||
|
landmarks.left_mouth.y,
|
||||||
|
landmarks.right_mouth.x,
|
||||||
|
landmarks.right_mouth.y,
|
||||||
|
])
|
||||||
|
.change_context(Error)?)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Store face embeddings
|
||||||
|
pub fn store_embeddings(
|
||||||
|
&self,
|
||||||
|
face_ids: &[i64],
|
||||||
|
embeddings: &[ndarray::Array2<f32>],
|
||||||
|
model_name: &str,
|
||||||
|
) -> Result<Vec<i64>> {
|
||||||
|
let mut embedding_ids = Vec::new();
|
||||||
|
|
||||||
|
for (face_idx, embedding_batch) in embeddings.iter().enumerate() {
|
||||||
|
for (batch_idx, embedding_row) in embedding_batch.rows().into_iter().enumerate() {
|
||||||
|
let global_idx = face_idx * embedding_batch.nrows() + batch_idx;
|
||||||
|
|
||||||
|
if global_idx >= face_ids.len() {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
let face_id = face_ids[global_idx];
|
||||||
|
let embedding_id =
|
||||||
|
self.store_single_embedding(face_id, embedding_row, model_name)?;
|
||||||
|
embedding_ids.push(embedding_id);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(embedding_ids)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Store a single embedding
|
||||||
|
pub fn store_single_embedding(
|
||||||
|
&self,
|
||||||
|
face_id: i64,
|
||||||
|
embedding: ndarray::ArrayView1<f32>,
|
||||||
|
model_name: &str,
|
||||||
|
) -> Result<i64> {
|
||||||
|
let safe_arrays =
|
||||||
|
ndarray_safetensors::SafeArrays::from_ndarrays([("embedding", embedding)])
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
let embedding_bytes = safe_arrays.serialize().change_context(Error)?;
|
||||||
|
|
||||||
|
let mut stmt = self
|
||||||
|
.conn
|
||||||
|
.prepare("INSERT INTO embeddings (face_id, embedding, model_name) VALUES (?1, ?2, ?3)")
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
stmt.execute(params![face_id, embedding_bytes, model_name])
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
Ok(self.conn.last_insert_rowid())
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get image by ID
|
||||||
|
pub fn get_image(&self, image_id: i64) -> Result<Option<ImageRecord>> {
|
||||||
|
let mut stmt = self
|
||||||
|
.conn
|
||||||
|
.prepare("SELECT id, file_path, width, height, created_at FROM images WHERE id = ?1")
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
let result = stmt
|
||||||
|
.query_row(params![image_id], |row| {
|
||||||
|
Ok(ImageRecord {
|
||||||
|
id: row.get(0)?,
|
||||||
|
file_path: row.get(1)?,
|
||||||
|
width: row.get(2)?,
|
||||||
|
height: row.get(3)?,
|
||||||
|
created_at: row.get(4)?,
|
||||||
|
})
|
||||||
|
})
|
||||||
|
.optional()
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
Ok(result)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get all faces for an image
|
||||||
|
pub fn get_faces_for_image(&self, image_id: i64) -> Result<Vec<FaceRecord>> {
|
||||||
|
let mut stmt = self
|
||||||
|
.conn
|
||||||
|
.prepare(
|
||||||
|
r#"
|
||||||
|
SELECT id, image_id, bbox_x1, bbox_y1, bbox_x2, bbox_y2, confidence, created_at
|
||||||
|
FROM faces WHERE image_id = ?1
|
||||||
|
"#,
|
||||||
|
)
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
let face_iter = stmt
|
||||||
|
.query_map(params![image_id], |row| {
|
||||||
|
Ok(FaceRecord {
|
||||||
|
id: row.get(0)?,
|
||||||
|
image_id: row.get(1)?,
|
||||||
|
bbox_x1: row.get(2)?,
|
||||||
|
bbox_y1: row.get(3)?,
|
||||||
|
bbox_x2: row.get(4)?,
|
||||||
|
bbox_y2: row.get(5)?,
|
||||||
|
confidence: row.get(6)?,
|
||||||
|
created_at: row.get(7)?,
|
||||||
|
})
|
||||||
|
})
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
let mut faces = Vec::new();
|
||||||
|
for face in face_iter {
|
||||||
|
faces.push(face.change_context(Error)?);
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(faces)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get landmarks for a face
|
||||||
|
pub fn get_landmarks(&self, face_id: i64) -> Result<Option<LandmarkRecord>> {
|
||||||
|
let mut stmt = self
|
||||||
|
.conn
|
||||||
|
.prepare(
|
||||||
|
r#"
|
||||||
|
SELECT id, face_id, left_eye_x, left_eye_y, right_eye_x, right_eye_y,
|
||||||
|
nose_x, nose_y, left_mouth_x, left_mouth_y, right_mouth_x, right_mouth_y
|
||||||
|
FROM landmarks WHERE face_id = ?1
|
||||||
|
"#,
|
||||||
|
)
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
let result = stmt
|
||||||
|
.query_row(params![face_id], |row| {
|
||||||
|
Ok(LandmarkRecord {
|
||||||
|
id: row.get(0)?,
|
||||||
|
face_id: row.get(1)?,
|
||||||
|
left_eye_x: row.get(2)?,
|
||||||
|
left_eye_y: row.get(3)?,
|
||||||
|
right_eye_x: row.get(4)?,
|
||||||
|
right_eye_y: row.get(5)?,
|
||||||
|
nose_x: row.get(6)?,
|
||||||
|
nose_y: row.get(7)?,
|
||||||
|
left_mouth_x: row.get(8)?,
|
||||||
|
left_mouth_y: row.get(9)?,
|
||||||
|
right_mouth_x: row.get(10)?,
|
||||||
|
right_mouth_y: row.get(11)?,
|
||||||
|
})
|
||||||
|
})
|
||||||
|
.optional()
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
Ok(result)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get embeddings for a face
|
||||||
|
pub fn get_embeddings(&self, face_id: i64) -> Result<Vec<EmbeddingRecord>> {
|
||||||
|
let mut stmt = self
|
||||||
|
.conn
|
||||||
|
.prepare(
|
||||||
|
"SELECT id, face_id, embedding, model_name, created_at FROM embeddings WHERE face_id = ?1",
|
||||||
|
)
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
let embedding_iter = stmt
|
||||||
|
.query_map(params![face_id], |row| {
|
||||||
|
let embedding_bytes: Vec<u8> = row.get(2)?;
|
||||||
|
let embedding: ndarray::Array1<f32> = {
|
||||||
|
let sf = ndarray_safetensors::SafeArraysView::from_bytes(&embedding_bytes)
|
||||||
|
.change_context(Error)
|
||||||
|
// .change_context(Error)?
|
||||||
|
.unwrap();
|
||||||
|
sf.tensor::<f32, ndarray::Ix1>("embedding")
|
||||||
|
// .change_context(Error)?
|
||||||
|
.unwrap()
|
||||||
|
.to_owned()
|
||||||
|
};
|
||||||
|
|
||||||
|
Ok(EmbeddingRecord {
|
||||||
|
id: row.get(0)?,
|
||||||
|
face_id: row.get(1)?,
|
||||||
|
embedding,
|
||||||
|
model_name: row.get(3)?,
|
||||||
|
created_at: row.get(4)?,
|
||||||
|
})
|
||||||
|
})
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
let mut embeddings = Vec::new();
|
||||||
|
for embedding in embedding_iter {
|
||||||
|
embeddings.push(embedding.change_context(Error)?);
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(embeddings)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn get_image_for_face(&self, face_id: i64) -> Result<Option<ImageRecord>> {
|
||||||
|
let mut stmt = self
|
||||||
|
.conn
|
||||||
|
.prepare(
|
||||||
|
r#"
|
||||||
|
SELECT images.id, images.file_path, images.width, images.height, images.created_at
|
||||||
|
FROM images
|
||||||
|
JOIN faces ON faces.image_id = images.id
|
||||||
|
WHERE faces.id = ?1
|
||||||
|
"#,
|
||||||
|
)
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
let result = stmt
|
||||||
|
.query_row(params![face_id], |row| {
|
||||||
|
Ok(ImageRecord {
|
||||||
|
id: row.get(0)?,
|
||||||
|
file_path: row.get(1)?,
|
||||||
|
width: row.get(2)?,
|
||||||
|
height: row.get(3)?,
|
||||||
|
created_at: row.get(4)?,
|
||||||
|
})
|
||||||
|
})
|
||||||
|
.optional()
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
Ok(result)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get database statistics
|
||||||
|
pub fn get_stats(&self) -> Result<(usize, usize, usize, usize)> {
|
||||||
|
let images: usize = self
|
||||||
|
.conn
|
||||||
|
.query_row("SELECT COUNT(*) FROM images", [], |row| row.get(0))
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
let faces: usize = self
|
||||||
|
.conn
|
||||||
|
.query_row("SELECT COUNT(*) FROM faces", [], |row| row.get(0))
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
let landmarks: usize = self
|
||||||
|
.conn
|
||||||
|
.query_row("SELECT COUNT(*) FROM landmarks", [], |row| row.get(0))
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
let embeddings: usize = self
|
||||||
|
.conn
|
||||||
|
.query_row("SELECT COUNT(*) FROM embeddings", [], |row| row.get(0))
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
Ok((images, faces, landmarks, embeddings))
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Find similar faces based on cosine similarity of embeddings
|
||||||
|
/// Return ids and similarity scores of similar faces
|
||||||
|
pub fn find_similar_faces(
|
||||||
|
&self,
|
||||||
|
embedding: &ndarray::Array1<f32>,
|
||||||
|
threshold: f32,
|
||||||
|
limit: usize,
|
||||||
|
) -> Result<Vec<(i64, f32)>> {
|
||||||
|
// Serialize the query embedding to bytes
|
||||||
|
let embedding_bytes =
|
||||||
|
ndarray_safetensors::SafeArrays::from_ndarrays([("embedding", embedding.view())])
|
||||||
|
.change_context(Error)?
|
||||||
|
.serialize()
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
let mut stmt = self
|
||||||
|
.conn
|
||||||
|
.prepare(
|
||||||
|
r#" SELECT face_id, cosine_similarity(?1, embedding) as similarity
|
||||||
|
FROM embeddings
|
||||||
|
WHERE cosine_similarity(?1, embedding) >= ?2
|
||||||
|
ORDER BY similarity DESC
|
||||||
|
LIMIT ?3"#,
|
||||||
|
)
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
let result = stmt
|
||||||
|
.query_map(params![embedding_bytes, threshold, limit], |row| {
|
||||||
|
Ok((row.get::<_, i64>(0)?, row.get::<_, f32>(1)?))
|
||||||
|
})
|
||||||
|
.change_context(Error)?
|
||||||
|
.map(|r| r.change_context(Error))
|
||||||
|
.collect::<Result<Vec<_>>>()?;
|
||||||
|
|
||||||
|
// let mut results = Vec::new();
|
||||||
|
// for result in result_iter {
|
||||||
|
// results.push(result.change_context(Error)?);
|
||||||
|
// }
|
||||||
|
|
||||||
|
Ok(result)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn query_similarity(&self, embedding: &ndarray::Array1<f32>) {
|
||||||
|
let embedding_bytes =
|
||||||
|
ndarray_safetensors::SafeArrays::from_ndarrays([("embedding", embedding.view())])
|
||||||
|
.change_context(Error)
|
||||||
|
.unwrap()
|
||||||
|
.serialize()
|
||||||
|
.change_context(Error)
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
let mut stmt = self
|
||||||
|
.conn
|
||||||
|
.prepare(
|
||||||
|
r#"
|
||||||
|
SELECT face_id,
|
||||||
|
cosine_similarity(?1, embedding)
|
||||||
|
FROM embeddings
|
||||||
|
"#,
|
||||||
|
)
|
||||||
|
.change_context(Error)
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
let result_iter = stmt
|
||||||
|
.query_map(params![embedding_bytes], |row| {
|
||||||
|
Ok((row.get::<_, i64>(0)?, row.get::<_, f32>(1)?))
|
||||||
|
})
|
||||||
|
.change_context(Error)
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
for result in result_iter {
|
||||||
|
println!("{:?}", result);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get all embeddings for a specific model
|
||||||
|
pub fn get_all_embeddings(&self, model_name: Option<&str>) -> Result<Vec<EmbeddingRecord>> {
|
||||||
|
let mut embeddings = Vec::new();
|
||||||
|
|
||||||
|
if let Some(model) = model_name {
|
||||||
|
let mut stmt = self.conn.prepare(
|
||||||
|
"SELECT id, face_id, embedding, model_name, created_at FROM embeddings WHERE model_name = ?1"
|
||||||
|
).change_context(Error)?;
|
||||||
|
|
||||||
|
let embedding_iter = stmt
|
||||||
|
.query_map(params![model], |row| {
|
||||||
|
let embedding_bytes: Vec<u8> = row.get(2)?;
|
||||||
|
let embedding: ndarray::Array1<f32> = {
|
||||||
|
let sf = ndarray_safetensors::SafeArraysView::from_bytes(&embedding_bytes)
|
||||||
|
.change_context(Error)
|
||||||
|
.unwrap();
|
||||||
|
sf.tensor::<f32, ndarray::Ix1>("embedding")
|
||||||
|
.unwrap()
|
||||||
|
.to_owned()
|
||||||
|
};
|
||||||
|
|
||||||
|
Ok(EmbeddingRecord {
|
||||||
|
id: row.get(0)?,
|
||||||
|
face_id: row.get(1)?,
|
||||||
|
embedding,
|
||||||
|
model_name: row.get(3)?,
|
||||||
|
created_at: row.get(4)?,
|
||||||
|
})
|
||||||
|
})
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
for embedding in embedding_iter {
|
||||||
|
embeddings.push(embedding.change_context(Error)?);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
let mut stmt = self
|
||||||
|
.conn
|
||||||
|
.prepare("SELECT id, face_id, embedding, model_name, created_at FROM embeddings")
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
let embedding_iter = stmt
|
||||||
|
.query_map([], |row| {
|
||||||
|
let embedding_bytes: Vec<u8> = row.get(2)?;
|
||||||
|
let embedding: ndarray::Array1<f32> = {
|
||||||
|
let sf = ndarray_safetensors::SafeArraysView::from_bytes(&embedding_bytes)
|
||||||
|
.change_context(Error)
|
||||||
|
.unwrap();
|
||||||
|
sf.tensor::<f32, ndarray::Ix1>("embedding")
|
||||||
|
.unwrap()
|
||||||
|
.to_owned()
|
||||||
|
};
|
||||||
|
|
||||||
|
Ok(EmbeddingRecord {
|
||||||
|
id: row.get(0)?,
|
||||||
|
face_id: row.get(1)?,
|
||||||
|
embedding,
|
||||||
|
model_name: row.get(3)?,
|
||||||
|
created_at: row.get(4)?,
|
||||||
|
})
|
||||||
|
})
|
||||||
|
.change_context(Error)?;
|
||||||
|
|
||||||
|
for embedding in embedding_iter {
|
||||||
|
embeddings.push(embedding.change_context(Error)?);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(embeddings)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn add_sqlite_cosine_similarity(db: &Connection) -> Result<()> {
|
||||||
|
use rusqlite::functions::*;
|
||||||
|
db.create_scalar_function(
|
||||||
|
"cosine_similarity",
|
||||||
|
2,
|
||||||
|
FunctionFlags::SQLITE_UTF8 | FunctionFlags::SQLITE_DETERMINISTIC,
|
||||||
|
move |ctx| {
|
||||||
|
if ctx.len() != 2 {
|
||||||
|
return Err(rusqlite::Error::UserFunctionError(
|
||||||
|
"cosine_similarity requires exactly 2 arguments".into(),
|
||||||
|
));
|
||||||
|
}
|
||||||
|
let array_1 = ctx.get_raw(0).as_blob()?;
|
||||||
|
let array_2 = ctx.get_raw(1).as_blob()?;
|
||||||
|
|
||||||
|
let array_1_st = ndarray_safetensors::SafeArraysView::from_bytes(array_1)
|
||||||
|
.map_err(|e| rusqlite::Error::UserFunctionError(e.into()))?;
|
||||||
|
let array_2_st = ndarray_safetensors::SafeArraysView::from_bytes(array_2)
|
||||||
|
.map_err(|e| rusqlite::Error::UserFunctionError(e.into()))?;
|
||||||
|
|
||||||
|
let array_view_1 = array_1_st
|
||||||
|
.tensor_by_index::<f32, ndarray::Ix1>(0)
|
||||||
|
.map_err(|e| rusqlite::Error::UserFunctionError(e.into()))?;
|
||||||
|
let array_view_2 = array_2_st
|
||||||
|
.tensor_by_index::<f32, ndarray::Ix1>(0)
|
||||||
|
.map_err(|e| rusqlite::Error::UserFunctionError(e.into()))?;
|
||||||
|
|
||||||
|
let similarity = array_view_1
|
||||||
|
.cosine_similarity(array_view_2)
|
||||||
|
.map_err(|e| rusqlite::Error::UserFunctionError(e.into()))?;
|
||||||
|
|
||||||
|
Ok(similarity)
|
||||||
|
},
|
||||||
|
)
|
||||||
|
.change_context(Error)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_database_creation() -> Result<()> {
|
||||||
|
let db = FaceDatabase::in_memory()?;
|
||||||
|
let (images, faces, landmarks, embeddings) = db.get_stats()?;
|
||||||
|
assert_eq!(images, 0);
|
||||||
|
assert_eq!(faces, 0);
|
||||||
|
assert_eq!(landmarks, 0);
|
||||||
|
assert_eq!(embeddings, 0);
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_store_and_retrieve_image() -> Result<()> {
|
||||||
|
let db = FaceDatabase::in_memory()?;
|
||||||
|
let image_id = db.store_image("/path/to/image.jpg", 800, 600)?;
|
||||||
|
|
||||||
|
let image = db.get_image(image_id)?.unwrap();
|
||||||
|
assert_eq!(image.file_path, "/path/to/image.jpg");
|
||||||
|
assert_eq!(image.width, 800);
|
||||||
|
assert_eq!(image.height, 600);
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -170,12 +170,13 @@ impl FaceDetectionModelOutput {
|
|||||||
let boxes = self.bbox.slice(s![0, .., ..]);
|
let boxes = self.bbox.slice(s![0, .., ..]);
|
||||||
let landmarks_raw = self.landmark.slice(s![0, .., ..]);
|
let landmarks_raw = self.landmark.slice(s![0, .., ..]);
|
||||||
|
|
||||||
let mut decoded_boxes = Vec::new();
|
// let mut decoded_boxes = Vec::new();
|
||||||
let mut decoded_landmarks = Vec::new();
|
// let mut decoded_landmarks = Vec::new();
|
||||||
let mut confidences = Vec::new();
|
// let mut confidences = Vec::new();
|
||||||
|
|
||||||
for i in 0..priors.shape()[0] {
|
let (decoded_boxes, decoded_landmarks, confidences) = (0..priors.shape()[0])
|
||||||
if scores[i] > config.threshold {
|
.filter(|&i| scores[i] > config.threshold)
|
||||||
|
.map(|i| {
|
||||||
let prior = priors.row(i);
|
let prior = priors.row(i);
|
||||||
let loc = boxes.row(i);
|
let loc = boxes.row(i);
|
||||||
let landm = landmarks_raw.row(i);
|
let landm = landmarks_raw.row(i);
|
||||||
@@ -200,16 +201,21 @@ impl FaceDetectionModelOutput {
|
|||||||
let mut bbox =
|
let mut bbox =
|
||||||
Aabb2::from_min_max_vertices(Point2::new(xmin, ymin), Point2::new(xmax, ymax));
|
Aabb2::from_min_max_vertices(Point2::new(xmin, ymin), Point2::new(xmax, ymax));
|
||||||
if config.clamp {
|
if config.clamp {
|
||||||
bbox.component_clamp(0.0, 1.0);
|
bbox = bbox.component_clamp(0.0, 1.0);
|
||||||
}
|
}
|
||||||
decoded_boxes.push(bbox);
|
|
||||||
|
|
||||||
// Decode landmarks
|
// Decode landmarks
|
||||||
let mut points = [Point2::new(0.0, 0.0); 5];
|
let points: [Point2<f32>; 5] = (0..5)
|
||||||
for j in 0..5 {
|
.map(|j| {
|
||||||
points[j].x = prior_cx + landm[j * 2] * var[0] * prior_w;
|
Point2::new(
|
||||||
points[j].y = prior_cy + landm[j * 2 + 1] * var[0] * prior_h;
|
prior_cx + landm[j * 2] * var[0] * prior_w,
|
||||||
}
|
prior_cy + landm[j * 2 + 1] * var[0] * prior_h,
|
||||||
|
)
|
||||||
|
})
|
||||||
|
.collect::<Vec<_>>()
|
||||||
|
.try_into()
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
let landmarks = FaceLandmarks {
|
let landmarks = FaceLandmarks {
|
||||||
left_eye: points[0],
|
left_eye: points[0],
|
||||||
right_eye: points[1],
|
right_eye: points[1],
|
||||||
@@ -217,11 +223,18 @@ impl FaceDetectionModelOutput {
|
|||||||
left_mouth: points[3],
|
left_mouth: points[3],
|
||||||
right_mouth: points[4],
|
right_mouth: points[4],
|
||||||
};
|
};
|
||||||
decoded_landmarks.push(landmarks);
|
|
||||||
confidences.push(scores[i]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
(bbox, landmarks, scores[i])
|
||||||
|
})
|
||||||
|
.fold(
|
||||||
|
(Vec::new(), Vec::new(), Vec::new()),
|
||||||
|
|(mut boxes, mut landmarks, mut confs), (bbox, landmark, conf)| {
|
||||||
|
boxes.push(bbox);
|
||||||
|
landmarks.push(landmark);
|
||||||
|
confs.push(conf);
|
||||||
|
(boxes, landmarks, confs)
|
||||||
|
},
|
||||||
|
);
|
||||||
Ok(FaceDetectionProcessedOutput {
|
Ok(FaceDetectionProcessedOutput {
|
||||||
bbox: decoded_boxes,
|
bbox: decoded_boxes,
|
||||||
confidence: confidences,
|
confidence: confidences,
|
||||||
@@ -310,7 +323,7 @@ pub trait FaceDetector {
|
|||||||
fn detect_faces(
|
fn detect_faces(
|
||||||
&mut self,
|
&mut self,
|
||||||
image: ndarray::ArrayView3<u8>,
|
image: ndarray::ArrayView3<u8>,
|
||||||
config: FaceDetectionConfig,
|
config: &FaceDetectionConfig,
|
||||||
) -> Result<FaceDetectionOutput> {
|
) -> Result<FaceDetectionOutput> {
|
||||||
let (height, width, _channels) = image.dim();
|
let (height, width, _channels) = image.dim();
|
||||||
let output = self
|
let output = self
|
||||||
|
|||||||
@@ -61,35 +61,6 @@ impl FaceDetection {
|
|||||||
) -> std::result::Result<FaceDetectionBuilder, error_stack::Report<crate::errors::Error>> {
|
) -> std::result::Result<FaceDetectionBuilder, error_stack::Report<crate::errors::Error>> {
|
||||||
FaceDetectionBuilder::new(model)
|
FaceDetectionBuilder::new(model)
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn new(path: impl AsRef<Path>) -> Result<Self> {
|
|
||||||
let model = std::fs::read(path)
|
|
||||||
.change_context(Error)
|
|
||||||
.attach_printable("Failed to read model file")?;
|
|
||||||
Self::new_from_bytes(&model)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn new_from_bytes(model: &[u8]) -> Result<Self> {
|
|
||||||
tracing::info!("Loading face detection model from bytes");
|
|
||||||
let mut model = mnn::Interpreter::from_bytes(model)
|
|
||||||
.map_err(|e| e.into_inner())
|
|
||||||
.change_context(Error)
|
|
||||||
.attach_printable("Failed to load model from bytes")?;
|
|
||||||
model.set_session_mode(mnn::SessionMode::Release);
|
|
||||||
model
|
|
||||||
.set_cache_file("retinaface.cache", 128)
|
|
||||||
.change_context(Error)
|
|
||||||
.attach_printable("Failed to set cache file")?;
|
|
||||||
let bc = mnn::BackendConfig::default().with_memory_mode(mnn::MemoryMode::High);
|
|
||||||
let sc = mnn::ScheduleConfig::new()
|
|
||||||
.with_type(mnn::ForwardType::Metal)
|
|
||||||
.with_backend_config(bc);
|
|
||||||
tracing::info!("Creating session handle for face detection model");
|
|
||||||
let handle = mnn_sync::SessionHandle::new(model, sc)
|
|
||||||
.change_context(Error)
|
|
||||||
.attach_printable("Failed to create session handle")?;
|
|
||||||
Ok(FaceDetection { handle })
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl FaceDetector for FaceDetection {
|
impl FaceDetector for FaceDetection {
|
||||||
|
|||||||
@@ -1,11 +1,10 @@
|
|||||||
use crate::errors::*;
|
use crate::errors::*;
|
||||||
use crate::facedet::*;
|
use crate::facedet::*;
|
||||||
|
use crate::ort_ep::*;
|
||||||
use error_stack::ResultExt;
|
use error_stack::ResultExt;
|
||||||
use ndarray_resize::NdFir;
|
use ndarray_resize::NdFir;
|
||||||
use ort::{
|
use ort::{
|
||||||
execution_providers::{
|
execution_providers::{CPUExecutionProvider, ExecutionProviderDispatch},
|
||||||
CPUExecutionProvider, CoreMLExecutionProvider, ExecutionProviderDispatch,
|
|
||||||
},
|
|
||||||
session::{Session, builder::GraphOptimizationLevel},
|
session::{Session, builder::GraphOptimizationLevel},
|
||||||
value::Tensor,
|
value::Tensor,
|
||||||
};
|
};
|
||||||
@@ -33,18 +32,11 @@ impl FaceDetectionBuilder {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn with_execution_providers(mut self, providers: Vec<String>) -> Self {
|
pub fn with_execution_providers(mut self, providers: impl AsRef<[ExecutionProvider]>) -> Self {
|
||||||
let execution_providers: Vec<ExecutionProviderDispatch> = providers
|
let execution_providers: Vec<ExecutionProviderDispatch> = providers
|
||||||
.into_iter()
|
.as_ref()
|
||||||
.filter_map(|provider| match provider.as_str() {
|
.iter()
|
||||||
"cpu" | "CPU" => Some(CPUExecutionProvider::default().build()),
|
.filter_map(|provider| provider.to_dispatch())
|
||||||
#[cfg(target_os = "macos")]
|
|
||||||
"coreml" | "CoreML" => Some(CoreMLExecutionProvider::default().build()),
|
|
||||||
_ => {
|
|
||||||
tracing::warn!("Unknown execution provider: {}", provider);
|
|
||||||
None
|
|
||||||
}
|
|
||||||
})
|
|
||||||
.collect();
|
.collect();
|
||||||
|
|
||||||
if !execution_providers.is_empty() {
|
if !execution_providers.is_empty() {
|
||||||
|
|||||||
@@ -11,8 +11,25 @@ pub use facenet::ort::EmbeddingGenerator as OrtEmbeddingGenerator;
|
|||||||
use crate::errors::*;
|
use crate::errors::*;
|
||||||
use ndarray::{Array2, ArrayView4};
|
use ndarray::{Array2, ArrayView4};
|
||||||
|
|
||||||
|
pub mod preprocessing {
|
||||||
|
use ndarray::*;
|
||||||
|
pub fn preprocess(faces: ArrayView4<u8>) -> Array4<f32> {
|
||||||
|
let mut owned = faces.as_standard_layout().mapv(|v| v as f32).to_owned();
|
||||||
|
owned.axis_iter_mut(Axis(0)).for_each(|mut image| {
|
||||||
|
let mean = image.mean().unwrap_or(0.0);
|
||||||
|
let std = image.std(0.0);
|
||||||
|
if std > 0.0 {
|
||||||
|
image.mapv_inplace(|x| (x - mean) / std);
|
||||||
|
} else {
|
||||||
|
image.mapv_inplace(|x| (x - 127.5) / 128.0)
|
||||||
|
}
|
||||||
|
});
|
||||||
|
owned
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/// Common trait for face embedding backends - maintained for backward compatibility
|
/// Common trait for face embedding backends - maintained for backward compatibility
|
||||||
pub trait FaceEmbedder {
|
pub trait FaceEmbedder {
|
||||||
/// Generate embeddings for a batch of face images
|
/// Generate embeddings for a batch of face images
|
||||||
fn run_models(&self, faces: ArrayView4<u8>) -> Result<Array2<f32>>;
|
fn run_models(&mut self, faces: ArrayView4<u8>) -> Result<Array2<f32>>;
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -4,6 +4,7 @@ pub mod ort;
|
|||||||
use crate::errors::*;
|
use crate::errors::*;
|
||||||
use error_stack::ResultExt;
|
use error_stack::ResultExt;
|
||||||
use ndarray::{Array1, Array2, ArrayView3, ArrayView4};
|
use ndarray::{Array1, Array2, ArrayView3, ArrayView4};
|
||||||
|
use ndarray_math::{CosineSimilarity, EuclideanDistance};
|
||||||
|
|
||||||
/// Configuration for face embedding processing
|
/// Configuration for face embedding processing
|
||||||
#[derive(Debug, Clone, PartialEq)]
|
#[derive(Debug, Clone, PartialEq)]
|
||||||
@@ -32,9 +33,9 @@ impl FaceEmbeddingConfig {
|
|||||||
impl Default for FaceEmbeddingConfig {
|
impl Default for FaceEmbeddingConfig {
|
||||||
fn default() -> Self {
|
fn default() -> Self {
|
||||||
Self {
|
Self {
|
||||||
input_width: 160,
|
input_width: 320,
|
||||||
input_height: 160,
|
input_height: 320,
|
||||||
normalize: true,
|
normalize: false,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -63,15 +64,14 @@ impl FaceEmbedding {
|
|||||||
|
|
||||||
/// Calculate cosine similarity with another embedding
|
/// Calculate cosine similarity with another embedding
|
||||||
pub fn cosine_similarity(&self, other: &FaceEmbedding) -> f32 {
|
pub fn cosine_similarity(&self, other: &FaceEmbedding) -> f32 {
|
||||||
let dot_product = self.vector.dot(&other.vector);
|
self.vector.cosine_similarity(&other.vector).unwrap_or(0.0)
|
||||||
let norm_self = self.vector.mapv(|x| x * x).sum().sqrt();
|
|
||||||
let norm_other = other.vector.mapv(|x| x * x).sum().sqrt();
|
|
||||||
dot_product / (norm_self * norm_other)
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Calculate Euclidean distance with another embedding
|
/// Calculate Euclidean distance with another embedding
|
||||||
pub fn euclidean_distance(&self, other: &FaceEmbedding) -> f32 {
|
pub fn euclidean_distance(&self, other: &FaceEmbedding) -> f32 {
|
||||||
(&self.vector - &other.vector).mapv(|x| x * x).sum().sqrt()
|
self.vector
|
||||||
|
.euclidean_distance(other.vector.view())
|
||||||
|
.unwrap_or(f32::INFINITY)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Normalize the embedding vector to unit length
|
/// Normalize the embedding vector to unit length
|
||||||
|
|||||||
@@ -56,12 +56,6 @@ impl EmbeddingGeneratorBuilder {
|
|||||||
impl EmbeddingGenerator {
|
impl EmbeddingGenerator {
|
||||||
const INPUT_NAME: &'static str = "serving_default_input_6:0";
|
const INPUT_NAME: &'static str = "serving_default_input_6:0";
|
||||||
const OUTPUT_NAME: &'static str = "StatefulPartitionedCall:0";
|
const OUTPUT_NAME: &'static str = "StatefulPartitionedCall:0";
|
||||||
pub fn new(path: impl AsRef<Path>) -> Result<Self> {
|
|
||||||
let model = std::fs::read(path)
|
|
||||||
.change_context(Error)
|
|
||||||
.attach_printable("Failed to read model file")?;
|
|
||||||
Self::new_from_bytes(&model)
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn builder<T: AsRef<[u8]>>(
|
pub fn builder<T: AsRef<[u8]>>(
|
||||||
model: T,
|
model: T,
|
||||||
@@ -69,33 +63,8 @@ impl EmbeddingGenerator {
|
|||||||
EmbeddingGeneratorBuilder::new(model)
|
EmbeddingGeneratorBuilder::new(model)
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn new_from_bytes(model: &[u8]) -> Result<Self> {
|
|
||||||
tracing::info!("Loading face embedding model from bytes");
|
|
||||||
let mut model = mnn::Interpreter::from_bytes(model)
|
|
||||||
.map_err(|e| e.into_inner())
|
|
||||||
.change_context(Error)
|
|
||||||
.attach_printable("Failed to load model from bytes")?;
|
|
||||||
model.set_session_mode(mnn::SessionMode::Release);
|
|
||||||
model
|
|
||||||
.set_cache_file("facenet.cache", 128)
|
|
||||||
.change_context(Error)
|
|
||||||
.attach_printable("Failed to set cache file")?;
|
|
||||||
let bc = mnn::BackendConfig::default().with_memory_mode(mnn::MemoryMode::High);
|
|
||||||
let sc = mnn::ScheduleConfig::new()
|
|
||||||
.with_type(mnn::ForwardType::Metal)
|
|
||||||
.with_backend_config(bc);
|
|
||||||
tracing::info!("Creating session handle for face embedding model");
|
|
||||||
let handle = mnn_sync::SessionHandle::new(model, sc)
|
|
||||||
.change_context(Error)
|
|
||||||
.attach_printable("Failed to create session handle")?;
|
|
||||||
Ok(Self { handle })
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn run_models(&self, face: ArrayView4<u8>) -> Result<Array2<f32>> {
|
pub fn run_models(&self, face: ArrayView4<u8>) -> Result<Array2<f32>> {
|
||||||
let tensor = face
|
let tensor = crate::faceembed::preprocessing::preprocess(face);
|
||||||
// .permuted_axes((0, 3, 1, 2))
|
|
||||||
.as_standard_layout()
|
|
||||||
.mapv(|x| x as f32);
|
|
||||||
let shape: [usize; 4] = tensor.dim().into();
|
let shape: [usize; 4] = tensor.dim().into();
|
||||||
let shape = shape.map(|f| f as i32);
|
let shape = shape.map(|f| f as i32);
|
||||||
let output = self
|
let output = self
|
||||||
@@ -142,14 +111,6 @@ impl EmbeddingGenerator {
|
|||||||
.change_context(Error)?;
|
.change_context(Error)?;
|
||||||
Ok(output)
|
Ok(output)
|
||||||
}
|
}
|
||||||
|
|
||||||
// pub fn embedding(&self, roi: ArrayView3<u8>) -> Result<Array1<u8>> {
|
|
||||||
// todo!()
|
|
||||||
// }
|
|
||||||
|
|
||||||
// pub fn embeddings(&self, roi: ArrayView4<u8>) -> Result<Array2<u8>> {
|
|
||||||
// todo!()
|
|
||||||
// }
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl FaceNetEmbedder for EmbeddingGenerator {
|
impl FaceNetEmbedder for EmbeddingGenerator {
|
||||||
@@ -160,7 +121,7 @@ impl FaceNetEmbedder for EmbeddingGenerator {
|
|||||||
|
|
||||||
// Main trait implementation for backward compatibility
|
// Main trait implementation for backward compatibility
|
||||||
impl crate::faceembed::FaceEmbedder for EmbeddingGenerator {
|
impl crate::faceembed::FaceEmbedder for EmbeddingGenerator {
|
||||||
fn run_models(&self, faces: ArrayView4<u8>) -> Result<Array2<f32>> {
|
fn run_models(&mut self, faces: ArrayView4<u8>) -> Result<Array2<f32>> {
|
||||||
self.run_models(faces)
|
EmbeddingGenerator::run_models(self, faces)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1,11 +1,10 @@
|
|||||||
use crate::errors::*;
|
use crate::errors::*;
|
||||||
use crate::faceembed::facenet::FaceNetEmbedder;
|
use crate::faceembed::facenet::FaceNetEmbedder;
|
||||||
|
use crate::ort_ep::*;
|
||||||
use error_stack::ResultExt;
|
use error_stack::ResultExt;
|
||||||
use ndarray::{Array2, ArrayView4};
|
use ndarray::{Array2, ArrayView4};
|
||||||
use ort::{
|
use ort::{
|
||||||
execution_providers::{
|
execution_providers::{CPUExecutionProvider, ExecutionProviderDispatch},
|
||||||
CPUExecutionProvider, CoreMLExecutionProvider, ExecutionProviderDispatch,
|
|
||||||
},
|
|
||||||
session::{Session, builder::GraphOptimizationLevel},
|
session::{Session, builder::GraphOptimizationLevel},
|
||||||
value::Tensor,
|
value::Tensor,
|
||||||
};
|
};
|
||||||
@@ -33,18 +32,11 @@ impl EmbeddingGeneratorBuilder {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn with_execution_providers(mut self, providers: Vec<String>) -> Self {
|
pub fn with_execution_providers(mut self, providers: impl AsRef<[ExecutionProvider]>) -> Self {
|
||||||
let execution_providers: Vec<ExecutionProviderDispatch> = providers
|
let execution_providers: Vec<ExecutionProviderDispatch> = providers
|
||||||
.into_iter()
|
.as_ref()
|
||||||
.filter_map(|provider| match provider.as_str() {
|
.iter()
|
||||||
"cpu" | "CPU" => Some(CPUExecutionProvider::default().build()),
|
.filter_map(|provider| provider.to_dispatch())
|
||||||
#[cfg(target_os = "macos")]
|
|
||||||
"coreml" | "CoreML" => Some(CoreMLExecutionProvider::default().build()),
|
|
||||||
_ => {
|
|
||||||
tracing::warn!("Unknown execution provider: {}", provider);
|
|
||||||
None
|
|
||||||
}
|
|
||||||
})
|
|
||||||
.collect();
|
.collect();
|
||||||
|
|
||||||
if !execution_providers.is_empty() {
|
if !execution_providers.is_empty() {
|
||||||
@@ -112,7 +104,7 @@ impl EmbeddingGeneratorBuilder {
|
|||||||
.change_context(Error)
|
.change_context(Error)
|
||||||
.attach_printable("Failed to create ORT session from model bytes")?;
|
.attach_printable("Failed to create ORT session from model bytes")?;
|
||||||
|
|
||||||
tracing::info!("Successfully created ORT RetinaFace session");
|
tracing::info!("Successfully created ORT FaceNet session");
|
||||||
|
|
||||||
Ok(EmbeddingGenerator { session })
|
Ok(EmbeddingGenerator { session })
|
||||||
}
|
}
|
||||||
@@ -137,14 +129,65 @@ impl EmbeddingGenerator {
|
|||||||
}
|
}
|
||||||
|
|
||||||
pub fn new_from_bytes(model: impl AsRef<[u8]>) -> crate::errors::Result<Self> {
|
pub fn new_from_bytes(model: impl AsRef<[u8]>) -> crate::errors::Result<Self> {
|
||||||
tracing::info!("Loading face embedding model from bytes");
|
tracing::info!("Loading ORT face embedding model from bytes");
|
||||||
Self::builder(model)?.build()
|
Self::builder(model)?.build()
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn run_models(&self, _face: ArrayView4<u8>) -> crate::errors::Result<Array2<f32>> {
|
pub fn run_models(&mut self, faces: ArrayView4<u8>) -> crate::errors::Result<Array2<f32>> {
|
||||||
// TODO: Implement ORT inference
|
// Convert input from u8 to f32 and normalize to [0, 1] range
|
||||||
tracing::error!("ORT FaceNet inference not yet implemented");
|
let input_tensor = crate::faceembed::preprocessing::preprocess(faces);
|
||||||
Err(Error).attach_printable("ORT FaceNet implementation is incomplete")
|
|
||||||
|
// face_array = np.asarray(face_resized, 'float32')
|
||||||
|
// mean, std = face_array.mean(), face_array.std()
|
||||||
|
// face_normalized = (face_array - mean) / std
|
||||||
|
// let input_tensor = faces.mean()
|
||||||
|
|
||||||
|
tracing::trace!("Input tensor shape: {:?}", input_tensor.shape());
|
||||||
|
|
||||||
|
// Create ORT input tensor
|
||||||
|
let input_value = Tensor::from_array(input_tensor)
|
||||||
|
.change_context(Error)
|
||||||
|
.attach_printable("Failed to create input tensor")?;
|
||||||
|
|
||||||
|
// Run inference
|
||||||
|
tracing::debug!("Running ORT FaceNet inference");
|
||||||
|
let outputs = self
|
||||||
|
.session
|
||||||
|
.run(ort::inputs![Self::INPUT_NAME => input_value])
|
||||||
|
.change_context(Error)
|
||||||
|
.attach_printable("Failed to run inference")?;
|
||||||
|
|
||||||
|
// Extract output tensor
|
||||||
|
let output = outputs
|
||||||
|
.get(Self::OUTPUT_NAME)
|
||||||
|
.ok_or(Error)
|
||||||
|
.attach_printable("Missing output from FaceNet model")?
|
||||||
|
.try_extract_tensor::<f32>()
|
||||||
|
.change_context(Error)
|
||||||
|
.attach_printable("Failed to extract output tensor")?;
|
||||||
|
|
||||||
|
let (output_shape, output_data) = output;
|
||||||
|
|
||||||
|
tracing::trace!("Output shape: {:?}", output_shape);
|
||||||
|
|
||||||
|
// Convert to ndarray format
|
||||||
|
let output_dims = output_shape.as_ref();
|
||||||
|
|
||||||
|
// FaceNet typically outputs embeddings as [batch_size, embedding_dim]
|
||||||
|
let batch_size = output_dims[0] as usize;
|
||||||
|
let embedding_dim = output_dims[1] as usize;
|
||||||
|
|
||||||
|
let output_array =
|
||||||
|
ndarray::Array2::from_shape_vec((batch_size, embedding_dim), output_data.to_vec())
|
||||||
|
.change_context(Error)
|
||||||
|
.attach_printable("Failed to create output ndarray")?;
|
||||||
|
|
||||||
|
tracing::trace!(
|
||||||
|
"Generated embeddings with shape: {:?}",
|
||||||
|
output_array.shape()
|
||||||
|
);
|
||||||
|
|
||||||
|
Ok(output_array)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -156,7 +199,9 @@ impl FaceNetEmbedder for EmbeddingGenerator {
|
|||||||
|
|
||||||
// Main trait implementation for backward compatibility
|
// Main trait implementation for backward compatibility
|
||||||
impl crate::faceembed::FaceEmbedder for EmbeddingGenerator {
|
impl crate::faceembed::FaceEmbedder for EmbeddingGenerator {
|
||||||
fn run_models(&self, faces: ArrayView4<u8>) -> crate::errors::Result<Array2<f32>> {
|
fn run_models(&mut self, faces: ArrayView4<u8>) -> crate::errors::Result<Array2<f32>> {
|
||||||
|
// Need to create a mutable reference for the session
|
||||||
|
// This is a workaround for the trait signature mismatch
|
||||||
self.run_models(faces)
|
self.run_models(faces)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
1053
src/gui/app.rs
Normal file
1053
src/gui/app.rs
Normal file
File diff suppressed because it is too large
Load Diff
569
src/gui/bridge.rs
Normal file
569
src/gui/bridge.rs
Normal file
@@ -0,0 +1,569 @@
|
|||||||
|
use std::path::PathBuf;
|
||||||
|
|
||||||
|
use crate::errors;
|
||||||
|
use crate::facedet::{FaceDetectionConfig, FaceDetector, retinaface};
|
||||||
|
use crate::faceembed::facenet;
|
||||||
|
use crate::gui::app::{ComparisonResult, DetectionResult, ExecutorType};
|
||||||
|
use bounding_box::Aabb2;
|
||||||
|
use bounding_box::roi::MultiRoi as _;
|
||||||
|
use error_stack::ResultExt;
|
||||||
|
use fast_image_resize::ResizeOptions;
|
||||||
|
use ndarray::{Array1, Array2, Array3, Array4};
|
||||||
|
use ndarray_image::ImageToNdarray;
|
||||||
|
use ndarray_math::CosineSimilarity;
|
||||||
|
use ndarray_resize::NdFir;
|
||||||
|
|
||||||
|
const RETINAFACE_MODEL_MNN: &[u8] = include_bytes!("../../models/retinaface.mnn");
|
||||||
|
const FACENET_MODEL_MNN: &[u8] = include_bytes!("../../models/facenet.mnn");
|
||||||
|
const RETINAFACE_MODEL_ONNX: &[u8] = include_bytes!("../../models/retinaface.onnx");
|
||||||
|
const FACENET_MODEL_ONNX: &[u8] = include_bytes!("../../models/facenet.onnx");
|
||||||
|
|
||||||
|
pub struct FaceDetectionBridge;
|
||||||
|
|
||||||
|
impl FaceDetectionBridge {
|
||||||
|
pub async fn detect_faces(
|
||||||
|
image_path: PathBuf,
|
||||||
|
output_path: Option<PathBuf>,
|
||||||
|
threshold: f32,
|
||||||
|
nms_threshold: f32,
|
||||||
|
executor_type: ExecutorType,
|
||||||
|
) -> DetectionResult {
|
||||||
|
let start_time = std::time::Instant::now();
|
||||||
|
|
||||||
|
match Self::run_detection_internal(
|
||||||
|
image_path.clone(),
|
||||||
|
output_path,
|
||||||
|
threshold,
|
||||||
|
nms_threshold,
|
||||||
|
executor_type,
|
||||||
|
)
|
||||||
|
.await
|
||||||
|
{
|
||||||
|
Ok((faces_count, processed_image)) => {
|
||||||
|
let processing_time = start_time.elapsed().as_secs_f64();
|
||||||
|
DetectionResult::Success {
|
||||||
|
image_path,
|
||||||
|
faces_count,
|
||||||
|
processed_image,
|
||||||
|
processing_time,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Err(error) => DetectionResult::Error(error.to_string()),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub async fn compare_faces(
|
||||||
|
image1_path: PathBuf,
|
||||||
|
image2_path: PathBuf,
|
||||||
|
threshold: f32,
|
||||||
|
nms_threshold: f32,
|
||||||
|
executor_type: ExecutorType,
|
||||||
|
) -> ComparisonResult {
|
||||||
|
let start_time = std::time::Instant::now();
|
||||||
|
|
||||||
|
match Self::run_comparison_internal(
|
||||||
|
image1_path,
|
||||||
|
image2_path,
|
||||||
|
threshold,
|
||||||
|
nms_threshold,
|
||||||
|
executor_type,
|
||||||
|
)
|
||||||
|
.await
|
||||||
|
{
|
||||||
|
Ok((
|
||||||
|
image1_faces,
|
||||||
|
image2_faces,
|
||||||
|
image1_face_rois,
|
||||||
|
image2_face_rois,
|
||||||
|
best_similarity,
|
||||||
|
)) => {
|
||||||
|
let processing_time = start_time.elapsed().as_secs_f64();
|
||||||
|
ComparisonResult::Success {
|
||||||
|
image1_faces,
|
||||||
|
image2_faces,
|
||||||
|
image1_face_rois,
|
||||||
|
image2_face_rois,
|
||||||
|
best_similarity,
|
||||||
|
processing_time,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Err(error) => ComparisonResult::Error(error.to_string()),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
async fn run_detection_internal(
|
||||||
|
image_path: PathBuf,
|
||||||
|
output_path: Option<PathBuf>,
|
||||||
|
threshold: f32,
|
||||||
|
nms_threshold: f32,
|
||||||
|
executor_type: ExecutorType,
|
||||||
|
) -> Result<(usize, Option<Vec<u8>>), Box<dyn std::error::Error + Send + Sync>> {
|
||||||
|
// Load the image
|
||||||
|
let img = image::open(&image_path)?;
|
||||||
|
let img_rgb = img.to_rgb8();
|
||||||
|
|
||||||
|
// Convert to ndarray format
|
||||||
|
let image_array = img_rgb.as_ndarray()?;
|
||||||
|
|
||||||
|
// Create detection configuration
|
||||||
|
let config = FaceDetectionConfig::default()
|
||||||
|
.with_threshold(threshold)
|
||||||
|
.with_nms_threshold(nms_threshold)
|
||||||
|
.with_input_width(1024)
|
||||||
|
.with_input_height(1024);
|
||||||
|
|
||||||
|
// Create detector and detect faces
|
||||||
|
let faces = match executor_type {
|
||||||
|
ExecutorType::MnnCpu => {
|
||||||
|
let mut detector = retinaface::mnn::FaceDetection::builder(RETINAFACE_MODEL_MNN)
|
||||||
|
.map_err(|e| format!("Failed to create MNN detector: {}", e))?
|
||||||
|
.with_forward_type(mnn::ForwardType::CPU)
|
||||||
|
.build()
|
||||||
|
.map_err(|e| format!("Failed to build MNN detector: {}", e))?;
|
||||||
|
|
||||||
|
detector
|
||||||
|
.detect_faces(image_array.view(), &config)
|
||||||
|
.map_err(|e| format!("Detection failed: {}", e))?
|
||||||
|
}
|
||||||
|
#[cfg(feature = "mnn-metal")]
|
||||||
|
ExecutorType::MnnMetal => {
|
||||||
|
let mut detector = retinaface::mnn::FaceDetection::builder(RETINAFACE_MODEL_MNN)
|
||||||
|
.map_err(|e| format!("Failed to create MNN detector: {}", e))?
|
||||||
|
.with_forward_type(mnn::ForwardType::Metal)
|
||||||
|
.build()
|
||||||
|
.map_err(|e| format!("Failed to build MNN detector: {}", e))?;
|
||||||
|
|
||||||
|
detector
|
||||||
|
.detect_faces(image_array.view(), &config)
|
||||||
|
.map_err(|e| format!("Detection failed: {}", e))?
|
||||||
|
}
|
||||||
|
#[cfg(feature = "mnn-coreml")]
|
||||||
|
ExecutorType::MnnCoreML => {
|
||||||
|
let mut detector = retinaface::mnn::FaceDetection::builder(RETINAFACE_MODEL_MNN)
|
||||||
|
.map_err(|e| format!("Failed to create MNN detector: {}", e))?
|
||||||
|
.with_forward_type(mnn::ForwardType::CoreML)
|
||||||
|
.build()
|
||||||
|
.map_err(|e| format!("Failed to build MNN detector: {}", e))?;
|
||||||
|
|
||||||
|
detector
|
||||||
|
.detect_faces(image_array.view(), &config)
|
||||||
|
.map_err(|e| format!("Detection failed: {}", e))?
|
||||||
|
}
|
||||||
|
ExecutorType::OnnxCpu => {
|
||||||
|
let mut detector = retinaface::ort::FaceDetection::builder(RETINAFACE_MODEL_ONNX)
|
||||||
|
.map_err(|e| format!("Failed to create ONNX detector: {}", e))?
|
||||||
|
.build()
|
||||||
|
.map_err(|e| format!("Failed to build ONNX detector: {}", e))?;
|
||||||
|
|
||||||
|
detector
|
||||||
|
.detect_faces(image_array.view(), &config)
|
||||||
|
.map_err(|e| format!("Detection failed: {}", e))?
|
||||||
|
}
|
||||||
|
#[cfg(feature = "ort-cuda")]
|
||||||
|
ExecutorType::OrtCuda => {
|
||||||
|
use crate::ort_ep::ExecutionProvider;
|
||||||
|
|
||||||
|
let ep = ExecutionProvider::CUDA;
|
||||||
|
let mut detector = retinaface::ort::FaceDetection::builder(RETINAFACE_MODEL_ONNX)
|
||||||
|
.map_err(|e| format!("Failed to create ONNX CUDA detector: {}", e))?
|
||||||
|
.with_execution_providers([ep])
|
||||||
|
.build()
|
||||||
|
.map_err(|e| format!("Failed to build ONNX CUDA detector: {}", e))?;
|
||||||
|
|
||||||
|
detector
|
||||||
|
.detect_faces(image_array.view(), &config)
|
||||||
|
.map_err(|e| format!("CUDA detection failed: {}", e))?
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
let faces_count = faces.bbox.len();
|
||||||
|
|
||||||
|
// Generate output image with bounding boxes if requested
|
||||||
|
let processed_image = if output_path.is_some() || true {
|
||||||
|
// Always generate for GUI display
|
||||||
|
let mut output_img = img.to_rgb8();
|
||||||
|
|
||||||
|
for bbox in &faces.bbox {
|
||||||
|
let min_point = bbox.min_vertex();
|
||||||
|
let size = bbox.size();
|
||||||
|
let rect = imageproc::rect::Rect::at(min_point.x as i32, min_point.y as i32)
|
||||||
|
.of_size(size.x as u32, size.y as u32);
|
||||||
|
imageproc::drawing::draw_hollow_rect_mut(
|
||||||
|
&mut output_img,
|
||||||
|
rect,
|
||||||
|
image::Rgb([255, 0, 0]),
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Convert to bytes for GUI display
|
||||||
|
let mut buffer = Vec::new();
|
||||||
|
let mut cursor = std::io::Cursor::new(&mut buffer);
|
||||||
|
image::DynamicImage::ImageRgb8(output_img.clone())
|
||||||
|
.write_to(&mut cursor, image::ImageFormat::Png)?;
|
||||||
|
|
||||||
|
// Save to file if output path is specified
|
||||||
|
if let Some(ref output_path) = output_path {
|
||||||
|
output_img.save(output_path)?;
|
||||||
|
}
|
||||||
|
|
||||||
|
Some(buffer)
|
||||||
|
} else {
|
||||||
|
None
|
||||||
|
};
|
||||||
|
|
||||||
|
Ok((faces_count, processed_image))
|
||||||
|
}
|
||||||
|
|
||||||
|
async fn run_comparison_internal(
|
||||||
|
image1_path: PathBuf,
|
||||||
|
image2_path: PathBuf,
|
||||||
|
threshold: f32,
|
||||||
|
nms_threshold: f32,
|
||||||
|
executor_type: ExecutorType,
|
||||||
|
) -> Result<
|
||||||
|
(usize, usize, Vec<Array3<u8>>, Vec<Array3<u8>>, f32),
|
||||||
|
Box<dyn std::error::Error + Send + Sync>,
|
||||||
|
> {
|
||||||
|
// Create detector and embedder, detect faces and generate embeddings
|
||||||
|
let (image1_faces, image2_faces, image1_rois, image2_rois, best_similarity) =
|
||||||
|
match executor_type {
|
||||||
|
ExecutorType::MnnCpu => {
|
||||||
|
let mut detector =
|
||||||
|
retinaface::mnn::FaceDetection::builder(RETINAFACE_MODEL_MNN)
|
||||||
|
.map_err(|e| format!("Failed to create MNN detector: {}", e))?
|
||||||
|
.with_forward_type(mnn::ForwardType::CPU)
|
||||||
|
.build()
|
||||||
|
.map_err(|e| format!("Failed to build MNN detector: {}", e))?;
|
||||||
|
|
||||||
|
let mut embedder = facenet::mnn::EmbeddingGenerator::builder(FACENET_MODEL_MNN)
|
||||||
|
.map_err(|e| format!("Failed to create MNN embedder: {}", e))?
|
||||||
|
.with_forward_type(mnn::ForwardType::CPU)
|
||||||
|
.build()
|
||||||
|
.map_err(|e| format!("Failed to build MNN embedder: {}", e))?;
|
||||||
|
|
||||||
|
let img_1 = run_detection(
|
||||||
|
image1_path,
|
||||||
|
&mut detector,
|
||||||
|
&mut embedder,
|
||||||
|
threshold,
|
||||||
|
nms_threshold,
|
||||||
|
2,
|
||||||
|
)?;
|
||||||
|
let img_2 = run_detection(
|
||||||
|
image2_path,
|
||||||
|
&mut detector,
|
||||||
|
&mut embedder,
|
||||||
|
threshold,
|
||||||
|
nms_threshold,
|
||||||
|
2,
|
||||||
|
)?;
|
||||||
|
|
||||||
|
let image1_rois = img_1.rois;
|
||||||
|
let image2_rois = img_2.rois;
|
||||||
|
let image1_bbox_len = img_1.bbox.len();
|
||||||
|
let image2_bbox_len = img_2.bbox.len();
|
||||||
|
let best_similarity = compare_faces(&img_1.embeddings, &img_2.embeddings)?;
|
||||||
|
|
||||||
|
(
|
||||||
|
image1_bbox_len,
|
||||||
|
image2_bbox_len,
|
||||||
|
image1_rois,
|
||||||
|
image2_rois,
|
||||||
|
best_similarity,
|
||||||
|
)
|
||||||
|
}
|
||||||
|
#[cfg(feature = "mnn-metal")]
|
||||||
|
ExecutorType::MnnMetal => {
|
||||||
|
let mut detector =
|
||||||
|
retinaface::mnn::FaceDetection::builder(RETINAFACE_MODEL_MNN)
|
||||||
|
.map_err(|e| format!("Failed to create MNN detector: {}", e))?
|
||||||
|
.with_forward_type(mnn::ForwardType::Metal)
|
||||||
|
.build()
|
||||||
|
.map_err(|e| format!("Failed to build MNN detector: {}", e))?;
|
||||||
|
|
||||||
|
let mut embedder = facenet::mnn::EmbeddingGenerator::builder(FACENET_MODEL_MNN)
|
||||||
|
.map_err(|e| format!("Failed to create MNN embedder: {}", e))?
|
||||||
|
.with_forward_type(mnn::ForwardType::Metal)
|
||||||
|
.build()
|
||||||
|
.map_err(|e| format!("Failed to build MNN embedder: {}", e))?;
|
||||||
|
|
||||||
|
let img_1 = run_detection(
|
||||||
|
image1_path,
|
||||||
|
&mut detector,
|
||||||
|
&mut embedder,
|
||||||
|
threshold,
|
||||||
|
nms_threshold,
|
||||||
|
2,
|
||||||
|
)?;
|
||||||
|
let img_2 = run_detection(
|
||||||
|
image2_path,
|
||||||
|
&mut detector,
|
||||||
|
&mut embedder,
|
||||||
|
threshold,
|
||||||
|
nms_threshold,
|
||||||
|
2,
|
||||||
|
)?;
|
||||||
|
|
||||||
|
let image1_rois = img_1.rois;
|
||||||
|
let image2_rois = img_2.rois;
|
||||||
|
let image1_bbox_len = img_1.bbox.len();
|
||||||
|
let image2_bbox_len = img_2.bbox.len();
|
||||||
|
let best_similarity = compare_faces(&img_1.embeddings, &img_2.embeddings)?;
|
||||||
|
|
||||||
|
(
|
||||||
|
image1_bbox_len,
|
||||||
|
image2_bbox_len,
|
||||||
|
image1_rois,
|
||||||
|
image2_rois,
|
||||||
|
best_similarity,
|
||||||
|
)
|
||||||
|
}
|
||||||
|
#[cfg(feature = "mnn-coreml")]
|
||||||
|
ExecutorType::MnnCoreML => {
|
||||||
|
let mut detector =
|
||||||
|
retinaface::mnn::FaceDetection::builder(RETINAFACE_MODEL_MNN)
|
||||||
|
.map_err(|e| format!("Failed to create MNN detector: {}", e))?
|
||||||
|
.with_forward_type(mnn::ForwardType::CoreML)
|
||||||
|
.build()
|
||||||
|
.map_err(|e| format!("Failed to build MNN detector: {}", e))?;
|
||||||
|
|
||||||
|
let mut embedder = facenet::mnn::EmbeddingGenerator::builder(FACENET_MODEL_MNN)
|
||||||
|
.map_err(|e| format!("Failed to create MNN embedder: {}", e))?
|
||||||
|
.with_forward_type(mnn::ForwardType::CoreML)
|
||||||
|
.build()
|
||||||
|
.map_err(|e| format!("Failed to build MNN embedder: {}", e))?;
|
||||||
|
|
||||||
|
let img_1 = run_detection(
|
||||||
|
image1_path,
|
||||||
|
&mut detector,
|
||||||
|
&mut embedder,
|
||||||
|
threshold,
|
||||||
|
nms_threshold,
|
||||||
|
2,
|
||||||
|
)?;
|
||||||
|
let img_2 = run_detection(
|
||||||
|
image2_path,
|
||||||
|
&mut detector,
|
||||||
|
&mut embedder,
|
||||||
|
threshold,
|
||||||
|
nms_threshold,
|
||||||
|
2,
|
||||||
|
)?;
|
||||||
|
|
||||||
|
let image1_rois = img_1.rois;
|
||||||
|
let image2_rois = img_2.rois;
|
||||||
|
let image1_bbox_len = img_1.bbox.len();
|
||||||
|
let image2_bbox_len = img_2.bbox.len();
|
||||||
|
let best_similarity = compare_faces(&img_1.embeddings, &img_2.embeddings)?;
|
||||||
|
|
||||||
|
(
|
||||||
|
image1_bbox_len,
|
||||||
|
image2_bbox_len,
|
||||||
|
image1_rois,
|
||||||
|
image2_rois,
|
||||||
|
best_similarity,
|
||||||
|
)
|
||||||
|
}
|
||||||
|
ExecutorType::OnnxCpu => unimplemented!("ONNX face comparison not yet implemented"),
|
||||||
|
#[cfg(feature = "ort-cuda")]
|
||||||
|
ExecutorType::OrtCuda => {
|
||||||
|
use crate::ort_ep::ExecutionProvider;
|
||||||
|
let ep = ExecutionProvider::CUDA;
|
||||||
|
let mut detector =
|
||||||
|
retinaface::ort::FaceDetection::builder(RETINAFACE_MODEL_ONNX)
|
||||||
|
.map_err(|e| format!("Failed to create MNN detector: {}", e))?
|
||||||
|
.with_execution_providers([ep])
|
||||||
|
.build()
|
||||||
|
.map_err(|e| format!("Failed to build MNN detector: {}", e))?;
|
||||||
|
|
||||||
|
let mut embedder =
|
||||||
|
facenet::ort::EmbeddingGenerator::builder(FACENET_MODEL_ONNX)
|
||||||
|
.map_err(|e| format!("Failed to create MNN embedder: {}", e))?
|
||||||
|
.with_execution_providers([ep])
|
||||||
|
.build()
|
||||||
|
.map_err(|e| format!("Failed to build MNN embedder: {}", e))?;
|
||||||
|
|
||||||
|
let img_1 = run_detection(
|
||||||
|
image1_path,
|
||||||
|
&mut detector,
|
||||||
|
&mut embedder,
|
||||||
|
threshold,
|
||||||
|
nms_threshold,
|
||||||
|
2,
|
||||||
|
)?;
|
||||||
|
let img_2 = run_detection(
|
||||||
|
image2_path,
|
||||||
|
&mut detector,
|
||||||
|
&mut embedder,
|
||||||
|
threshold,
|
||||||
|
nms_threshold,
|
||||||
|
2,
|
||||||
|
)?;
|
||||||
|
|
||||||
|
let image1_rois = img_1.rois;
|
||||||
|
let image2_rois = img_2.rois;
|
||||||
|
let image1_bbox_len = img_1.bbox.len();
|
||||||
|
let image2_bbox_len = img_2.bbox.len();
|
||||||
|
let best_similarity = compare_faces(&img_1.embeddings, &img_2.embeddings)?;
|
||||||
|
|
||||||
|
(
|
||||||
|
image1_bbox_len,
|
||||||
|
image2_bbox_len,
|
||||||
|
image1_rois,
|
||||||
|
image2_rois,
|
||||||
|
best_similarity,
|
||||||
|
)
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
Ok((
|
||||||
|
image1_faces,
|
||||||
|
image2_faces,
|
||||||
|
image1_rois,
|
||||||
|
image2_rois,
|
||||||
|
best_similarity,
|
||||||
|
))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
use crate::errors::Error;
|
||||||
|
pub fn compare_faces(
|
||||||
|
faces_1: &[Array1<f32>],
|
||||||
|
faces_2: &[Array1<f32>],
|
||||||
|
) -> Result<f32, error_stack::Report<crate::errors::Error>> {
|
||||||
|
use error_stack::Report;
|
||||||
|
|
||||||
|
if faces_1.is_empty() || faces_2.is_empty() {
|
||||||
|
Err(Report::new(crate::errors::Error))
|
||||||
|
.attach_printable("One or both images have no detected faces")?;
|
||||||
|
}
|
||||||
|
if faces_1.len() != faces_2.len() {
|
||||||
|
Err(Report::new(crate::errors::Error))
|
||||||
|
.attach_printable("Face count mismatch between images")?;
|
||||||
|
}
|
||||||
|
Ok(faces_1
|
||||||
|
.iter()
|
||||||
|
.zip(faces_2)
|
||||||
|
.flat_map(|(face_1, face_2)| face_1.cosine_similarity(face_2))
|
||||||
|
.inspect(|v| tracing::info!("Cosine similarity: {}", v))
|
||||||
|
.map(|v| ordered_float::OrderedFloat(v))
|
||||||
|
.max()
|
||||||
|
.map(|v| v.0)
|
||||||
|
.ok_or(Report::new(Error))?)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug)]
|
||||||
|
pub struct DetectionOutput {
|
||||||
|
bbox: Vec<Aabb2<usize>>,
|
||||||
|
rois: Vec<ndarray::Array3<u8>>,
|
||||||
|
embeddings: Vec<Array1<f32>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
fn run_detection<D, E>(
|
||||||
|
image: impl AsRef<std::path::Path>,
|
||||||
|
retinaface: &mut D,
|
||||||
|
facenet: &mut E,
|
||||||
|
threshold: f32,
|
||||||
|
nms_threshold: f32,
|
||||||
|
chunk_size: usize,
|
||||||
|
) -> crate::errors::Result<DetectionOutput>
|
||||||
|
where
|
||||||
|
D: crate::facedet::FaceDetector,
|
||||||
|
E: crate::faceembed::FaceEmbedder,
|
||||||
|
{
|
||||||
|
use errors::*;
|
||||||
|
// Initialize database if requested
|
||||||
|
let image = image.as_ref();
|
||||||
|
let image = image::open(image)
|
||||||
|
.change_context(Error)
|
||||||
|
.attach_printable(image.to_string_lossy().to_string())?;
|
||||||
|
let image = image.into_rgb8();
|
||||||
|
let mut array = image
|
||||||
|
.into_ndarray()
|
||||||
|
.change_context(errors::Error)
|
||||||
|
.attach_printable("Failed to convert image to ndarray")?;
|
||||||
|
let output = retinaface
|
||||||
|
.detect_faces(
|
||||||
|
array.view(),
|
||||||
|
&FaceDetectionConfig::default()
|
||||||
|
.with_threshold(threshold)
|
||||||
|
.with_nms_threshold(nms_threshold),
|
||||||
|
)
|
||||||
|
.change_context(errors::Error)
|
||||||
|
.attach_printable("Failed to detect faces")?;
|
||||||
|
|
||||||
|
let bboxes = output
|
||||||
|
.bbox
|
||||||
|
.iter()
|
||||||
|
.inspect(|bbox| tracing::info!("Raw bbox: {:?}", bbox))
|
||||||
|
.map(|bbox| bbox.as_::<f32>().scale_uniform(1.30).as_::<usize>())
|
||||||
|
.inspect(|bbox| tracing::info!("Padded bbox: {:?}", bbox))
|
||||||
|
.collect_vec();
|
||||||
|
for bbox in &bboxes {
|
||||||
|
tracing::info!("Detected face: {:?}", bbox);
|
||||||
|
use bounding_box::draw::*;
|
||||||
|
array.draw(bbox, color::palette::css::GREEN_YELLOW.to_rgba8(), 1);
|
||||||
|
}
|
||||||
|
use itertools::Itertools;
|
||||||
|
let face_rois = array
|
||||||
|
.view()
|
||||||
|
.multi_roi(&bboxes)
|
||||||
|
.change_context(Error)?
|
||||||
|
.into_iter()
|
||||||
|
.map(|roi| {
|
||||||
|
roi.as_standard_layout()
|
||||||
|
.fast_resize(224, 224, &ResizeOptions::default())
|
||||||
|
.change_context(Error)
|
||||||
|
})
|
||||||
|
.collect::<Result<Vec<_>>>()?;
|
||||||
|
let face_roi_views = face_rois.iter().map(|roi| roi.view()).collect::<Vec<_>>();
|
||||||
|
|
||||||
|
let embeddings: Vec<Array1<f32>> = face_roi_views
|
||||||
|
.chunks(chunk_size)
|
||||||
|
.map(|chunk| {
|
||||||
|
tracing::info!("Processing chunk of size: {}", chunk.len());
|
||||||
|
|
||||||
|
let og_size = chunk.len();
|
||||||
|
if chunk.len() < chunk_size {
|
||||||
|
tracing::warn!("Chunk size is less than 8, padding with zeros");
|
||||||
|
let zeros = Array3::zeros((224, 224, 3));
|
||||||
|
let chunk: Vec<_> = chunk
|
||||||
|
.iter()
|
||||||
|
.map(|arr| arr.reborrow())
|
||||||
|
.chain(core::iter::repeat(zeros.view()))
|
||||||
|
.take(chunk_size)
|
||||||
|
.collect();
|
||||||
|
let face_rois: Array4<u8> = ndarray::stack(ndarray::Axis(0), chunk.as_slice())
|
||||||
|
.change_context(errors::Error)
|
||||||
|
.attach_printable("Failed to stack rois together")?;
|
||||||
|
let output = facenet.run_models(face_rois.view()).change_context(Error)?;
|
||||||
|
Ok((output, og_size))
|
||||||
|
} else {
|
||||||
|
let face_rois: Array4<u8> = ndarray::stack(ndarray::Axis(0), chunk)
|
||||||
|
.change_context(errors::Error)
|
||||||
|
.attach_printable("Failed to stack rois together")?;
|
||||||
|
let output = facenet.run_models(face_rois.view()).change_context(Error)?;
|
||||||
|
Ok((output, og_size))
|
||||||
|
}
|
||||||
|
})
|
||||||
|
.collect::<Result<Vec<(Array2<f32>, usize)>>>()?
|
||||||
|
.into_iter()
|
||||||
|
.map(|(chunk, size): (Array2<f32>, usize)| {
|
||||||
|
use itertools::Itertools;
|
||||||
|
chunk
|
||||||
|
.rows()
|
||||||
|
.into_iter()
|
||||||
|
.take(size)
|
||||||
|
.map(|row| row.to_owned())
|
||||||
|
.collect_vec()
|
||||||
|
.into_iter()
|
||||||
|
})
|
||||||
|
.flatten()
|
||||||
|
.collect::<Vec<Array1<f32>>>();
|
||||||
|
|
||||||
|
Ok(DetectionOutput {
|
||||||
|
bbox: bboxes,
|
||||||
|
rois: face_rois,
|
||||||
|
embeddings,
|
||||||
|
})
|
||||||
|
}
|
||||||
5
src/gui/mod.rs
Normal file
5
src/gui/mod.rs
Normal file
@@ -0,0 +1,5 @@
|
|||||||
|
pub mod app;
|
||||||
|
pub mod bridge;
|
||||||
|
|
||||||
|
pub use app::{FaceDetectorApp, Message, run};
|
||||||
|
pub use bridge::FaceDetectionBridge;
|
||||||
@@ -1,5 +0,0 @@
|
|||||||
// pub struct Image {
|
|
||||||
// pub width: u32,
|
|
||||||
// pub height: u32,
|
|
||||||
// pub data: Vec<u8>,
|
|
||||||
// }
|
|
||||||
@@ -1,5 +1,7 @@
|
|||||||
|
pub mod database;
|
||||||
pub mod errors;
|
pub mod errors;
|
||||||
pub mod facedet;
|
pub mod facedet;
|
||||||
pub mod faceembed;
|
pub mod faceembed;
|
||||||
pub mod image;
|
pub mod gui;
|
||||||
use errors::*;
|
pub mod ort_ep;
|
||||||
|
pub use errors::*;
|
||||||
|
|||||||
161
src/main.rs
161
src/main.rs
@@ -1,161 +0,0 @@
|
|||||||
mod cli;
|
|
||||||
mod errors;
|
|
||||||
use bounding_box::roi::MultiRoi;
|
|
||||||
use detector::{facedet, facedet::FaceDetectionConfig, faceembed};
|
|
||||||
use errors::*;
|
|
||||||
use fast_image_resize::ResizeOptions;
|
|
||||||
use ndarray::*;
|
|
||||||
use ndarray_image::*;
|
|
||||||
use ndarray_resize::NdFir;
|
|
||||||
const RETINAFACE_MODEL_MNN: &[u8] = include_bytes!("../models/retinaface.mnn");
|
|
||||||
const FACENET_MODEL_MNN: &[u8] = include_bytes!("../models/facenet.mnn");
|
|
||||||
const RETINAFACE_MODEL_ONNX: &[u8] = include_bytes!("../models/retinaface.onnx");
|
|
||||||
const FACENET_MODEL_ONNX: &[u8] = include_bytes!("../models/facenet.onnx");
|
|
||||||
const CHUNK_SIZE: usize = 8;
|
|
||||||
pub fn main() -> Result<()> {
|
|
||||||
tracing_subscriber::fmt()
|
|
||||||
.with_env_filter("trace")
|
|
||||||
.with_thread_ids(true)
|
|
||||||
.with_thread_names(true)
|
|
||||||
.with_target(false)
|
|
||||||
.init();
|
|
||||||
let args = <cli::Cli as clap::Parser>::parse();
|
|
||||||
match args.cmd {
|
|
||||||
cli::SubCommand::Detect(detect) => {
|
|
||||||
// Choose backend based on executor type (defaulting to MNN for backward compatibility)
|
|
||||||
let executor = detect.executor.unwrap_or(cli::Executor::Mnn);
|
|
||||||
|
|
||||||
match executor {
|
|
||||||
cli::Executor::Mnn => {
|
|
||||||
let retinaface =
|
|
||||||
facedet::retinaface::mnn::FaceDetection::builder(RETINAFACE_MODEL_MNN)
|
|
||||||
.change_context(Error)?
|
|
||||||
.with_forward_type(detect.forward_type)
|
|
||||||
.build()
|
|
||||||
.change_context(errors::Error)
|
|
||||||
.attach_printable("Failed to create face detection model")?;
|
|
||||||
let facenet =
|
|
||||||
faceembed::facenet::mnn::EmbeddingGenerator::builder(FACENET_MODEL_MNN)
|
|
||||||
.change_context(Error)?
|
|
||||||
.with_forward_type(detect.forward_type)
|
|
||||||
.build()
|
|
||||||
.change_context(errors::Error)
|
|
||||||
.attach_printable("Failed to create face embedding model")?;
|
|
||||||
|
|
||||||
run_detection(detect, retinaface, facenet)?;
|
|
||||||
}
|
|
||||||
cli::Executor::Onnx => {
|
|
||||||
let retinaface =
|
|
||||||
facedet::retinaface::ort::FaceDetection::builder(RETINAFACE_MODEL_ONNX)
|
|
||||||
.change_context(Error)?
|
|
||||||
.build()
|
|
||||||
.change_context(errors::Error)
|
|
||||||
.attach_printable("Failed to create face detection model")?;
|
|
||||||
let facenet =
|
|
||||||
faceembed::facenet::ort::EmbeddingGenerator::builder(FACENET_MODEL_ONNX)
|
|
||||||
.change_context(Error)?
|
|
||||||
.build()
|
|
||||||
.change_context(errors::Error)
|
|
||||||
.attach_printable("Failed to create face embedding model")?;
|
|
||||||
|
|
||||||
run_detection(detect, retinaface, facenet)?;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
cli::SubCommand::List(list) => {
|
|
||||||
println!("List: {:?}", list);
|
|
||||||
}
|
|
||||||
cli::SubCommand::Completions { shell } => {
|
|
||||||
cli::Cli::completions(shell);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
fn run_detection<D, E>(detect: cli::Detect, mut retinaface: D, facenet: E) -> Result<()>
|
|
||||||
where
|
|
||||||
D: facedet::FaceDetector,
|
|
||||||
E: faceembed::FaceEmbedder,
|
|
||||||
{
|
|
||||||
let image = image::open(detect.image).change_context(Error)?;
|
|
||||||
let image = image.into_rgb8();
|
|
||||||
let mut array = image
|
|
||||||
.into_ndarray()
|
|
||||||
.change_context(errors::Error)
|
|
||||||
.attach_printable("Failed to convert image to ndarray")?;
|
|
||||||
let output = retinaface
|
|
||||||
.detect_faces(
|
|
||||||
array.view(),
|
|
||||||
FaceDetectionConfig::default()
|
|
||||||
.with_threshold(detect.threshold)
|
|
||||||
.with_nms_threshold(detect.nms_threshold),
|
|
||||||
)
|
|
||||||
.change_context(errors::Error)
|
|
||||||
.attach_printable("Failed to detect faces")?;
|
|
||||||
for bbox in &output.bbox {
|
|
||||||
tracing::info!("Detected face: {:?}", bbox);
|
|
||||||
use bounding_box::draw::*;
|
|
||||||
array.draw(bbox, color::palette::css::GREEN_YELLOW.to_rgba8(), 1);
|
|
||||||
}
|
|
||||||
let face_rois = array
|
|
||||||
.view()
|
|
||||||
.multi_roi(&output.bbox)
|
|
||||||
.change_context(Error)?
|
|
||||||
.into_iter()
|
|
||||||
// .inspect(|f| {
|
|
||||||
// tracing::info!("Face ROI shape before resize: {:?}", f.dim());
|
|
||||||
// })
|
|
||||||
.map(|roi| {
|
|
||||||
roi.as_standard_layout()
|
|
||||||
.fast_resize(512, 512, &ResizeOptions::default())
|
|
||||||
.change_context(Error)
|
|
||||||
})
|
|
||||||
// .inspect(|f| {
|
|
||||||
// f.as_ref().inspect(|f| {
|
|
||||||
// tracing::info!("Face ROI shape after resize: {:?}", f.dim());
|
|
||||||
// });
|
|
||||||
// })
|
|
||||||
.collect::<Result<Vec<_>>>()?;
|
|
||||||
let face_roi_views = face_rois.iter().map(|roi| roi.view()).collect::<Vec<_>>();
|
|
||||||
|
|
||||||
let chunk_size = CHUNK_SIZE;
|
|
||||||
let embeddings = face_roi_views
|
|
||||||
.chunks(chunk_size)
|
|
||||||
.map(|chunk| {
|
|
||||||
tracing::info!("Processing chunk of size: {}", chunk.len());
|
|
||||||
|
|
||||||
if chunk.len() < 8 {
|
|
||||||
tracing::warn!("Chunk size is less than 8, padding with zeros");
|
|
||||||
let zeros = Array3::zeros((512, 512, 3));
|
|
||||||
let zero_array = core::iter::repeat(zeros.view())
|
|
||||||
.take(chunk_size)
|
|
||||||
.collect::<Vec<_>>();
|
|
||||||
let face_rois: Array4<u8> = ndarray::stack(Axis(0), zero_array.as_slice())
|
|
||||||
.change_context(errors::Error)
|
|
||||||
.attach_printable("Failed to stack rois together")?;
|
|
||||||
let output = facenet.run_models(face_rois.view()).change_context(Error)?;
|
|
||||||
Ok(output)
|
|
||||||
} else {
|
|
||||||
let face_rois: Array4<u8> = ndarray::stack(Axis(0), chunk)
|
|
||||||
.change_context(errors::Error)
|
|
||||||
.attach_printable("Failed to stack rois together")?;
|
|
||||||
let output = facenet.run_models(face_rois.view()).change_context(Error)?;
|
|
||||||
Ok(output)
|
|
||||||
}
|
|
||||||
})
|
|
||||||
.collect::<Result<Vec<Array2<f32>>>>();
|
|
||||||
|
|
||||||
let v = array.view();
|
|
||||||
if let Some(output) = detect.output {
|
|
||||||
let image: image::RgbImage = v
|
|
||||||
.to_image()
|
|
||||||
.change_context(errors::Error)
|
|
||||||
.attach_printable("Failed to convert ndarray to image")?;
|
|
||||||
image
|
|
||||||
.save(output)
|
|
||||||
.change_context(errors::Error)
|
|
||||||
.attach_printable("Failed to save output image")?;
|
|
||||||
}
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
197
src/ort_ep.rs
Normal file
197
src/ort_ep.rs
Normal file
@@ -0,0 +1,197 @@
|
|||||||
|
#[cfg(feature = "ort-cuda")]
|
||||||
|
use ort::execution_providers::CUDAExecutionProvider;
|
||||||
|
#[cfg(feature = "ort-coreml")]
|
||||||
|
use ort::execution_providers::CoreMLExecutionProvider;
|
||||||
|
#[cfg(feature = "ort-directml")]
|
||||||
|
use ort::execution_providers::DirectMLExecutionProvider;
|
||||||
|
#[cfg(feature = "ort-openvino")]
|
||||||
|
use ort::execution_providers::OpenVINOExecutionProvider;
|
||||||
|
#[cfg(feature = "ort-tvm")]
|
||||||
|
use ort::execution_providers::TVMExecutionProvider;
|
||||||
|
#[cfg(feature = "ort-tensorrt")]
|
||||||
|
use ort::execution_providers::TensorRTExecutionProvider;
|
||||||
|
use ort::execution_providers::{CPUExecutionProvider, ExecutionProviderDispatch};
|
||||||
|
|
||||||
|
/// Supported execution providers for ONNX Runtime
|
||||||
|
#[derive(Debug, Copy, Clone)]
|
||||||
|
pub enum ExecutionProvider {
|
||||||
|
/// CPU execution provider (always available)
|
||||||
|
CPU,
|
||||||
|
/// CoreML execution provider (macOS only)
|
||||||
|
CoreML,
|
||||||
|
/// CUDA execution provider (requires cuda feature)
|
||||||
|
CUDA,
|
||||||
|
/// TensorRT execution provider (requires tensorrt feature)
|
||||||
|
TensorRT,
|
||||||
|
/// TVM execution provider (requires tvm feature)
|
||||||
|
TVM,
|
||||||
|
/// OpenVINO execution provider (requires openvino feature)
|
||||||
|
OpenVINO,
|
||||||
|
/// DirectML execution provider (Windows only, requires directml feature)
|
||||||
|
DirectML,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl std::fmt::Display for ExecutionProvider {
|
||||||
|
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||||
|
match self {
|
||||||
|
ExecutionProvider::CPU => write!(f, "CPU"),
|
||||||
|
ExecutionProvider::CoreML => write!(f, "CoreML"),
|
||||||
|
ExecutionProvider::CUDA => write!(f, "CUDA"),
|
||||||
|
ExecutionProvider::TensorRT => write!(f, "TensorRT"),
|
||||||
|
ExecutionProvider::TVM => write!(f, "TVM"),
|
||||||
|
ExecutionProvider::OpenVINO => write!(f, "OpenVINO"),
|
||||||
|
ExecutionProvider::DirectML => write!(f, "DirectML"),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl std::str::FromStr for ExecutionProvider {
|
||||||
|
type Err = String;
|
||||||
|
|
||||||
|
fn from_str(s: &str) -> Result<Self, Self::Err> {
|
||||||
|
match s.to_lowercase().as_str() {
|
||||||
|
"cpu" => Ok(ExecutionProvider::CPU),
|
||||||
|
"coreml" => Ok(ExecutionProvider::CoreML),
|
||||||
|
"cuda" => Ok(ExecutionProvider::CUDA),
|
||||||
|
"tensorrt" => Ok(ExecutionProvider::TensorRT),
|
||||||
|
"tvm" => Ok(ExecutionProvider::TVM),
|
||||||
|
"openvino" => Ok(ExecutionProvider::OpenVINO),
|
||||||
|
"directml" => Ok(ExecutionProvider::DirectML),
|
||||||
|
_ => Err(format!("Unknown execution provider: {}", s)),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl ExecutionProvider {
|
||||||
|
/// Returns all available execution providers for the current platform and features
|
||||||
|
pub fn available_providers() -> Vec<ExecutionProvider> {
|
||||||
|
vec![
|
||||||
|
ExecutionProvider::CPU,
|
||||||
|
#[cfg(all(target_os = "macos", feature = "ort-coreml"))]
|
||||||
|
ExecutionProvider::CoreML,
|
||||||
|
#[cfg(feature = "ort-cuda")]
|
||||||
|
ExecutionProvider::CUDA,
|
||||||
|
#[cfg(feature = "ort-tensorrt")]
|
||||||
|
ExecutionProvider::TensorRT,
|
||||||
|
#[cfg(feature = "ort-tvm")]
|
||||||
|
ExecutionProvider::TVM,
|
||||||
|
#[cfg(feature = "ort-openvino")]
|
||||||
|
ExecutionProvider::OpenVINO,
|
||||||
|
#[cfg(all(target_os = "windows", feature = "ort-directml"))]
|
||||||
|
ExecutionProvider::DirectML,
|
||||||
|
]
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Check if this execution provider is available on the current platform
|
||||||
|
pub fn is_available(&self) -> bool {
|
||||||
|
match self {
|
||||||
|
ExecutionProvider::CPU => true,
|
||||||
|
ExecutionProvider::CoreML => cfg!(target_os = "macos") && cfg!(feature = "ort-coreml"),
|
||||||
|
ExecutionProvider::CUDA => cfg!(feature = "ort-cuda"),
|
||||||
|
ExecutionProvider::TensorRT => cfg!(feature = "ort-tensorrt"),
|
||||||
|
ExecutionProvider::TVM => cfg!(feature = "ort-tvm"),
|
||||||
|
ExecutionProvider::OpenVINO => cfg!(feature = "ort-openvino"),
|
||||||
|
ExecutionProvider::DirectML => {
|
||||||
|
cfg!(target_os = "windows") && cfg!(feature = "ort-directml")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl ExecutionProvider {
|
||||||
|
pub fn to_dispatch(&self) -> Option<ExecutionProviderDispatch> {
|
||||||
|
match self {
|
||||||
|
ExecutionProvider::CPU => Some(CPUExecutionProvider::default().build()),
|
||||||
|
ExecutionProvider::CoreML => {
|
||||||
|
#[cfg(target_os = "macos")]
|
||||||
|
{
|
||||||
|
#[cfg(feature = "ort-coreml")]
|
||||||
|
{
|
||||||
|
use tap::Tap;
|
||||||
|
|
||||||
|
Some(
|
||||||
|
CoreMLExecutionProvider::default()
|
||||||
|
.with_model_format(
|
||||||
|
ort::execution_providers::coreml::CoreMLModelFormat::MLProgram,
|
||||||
|
)
|
||||||
|
.build(),
|
||||||
|
)
|
||||||
|
}
|
||||||
|
#[cfg(not(feature = "ort-coreml"))]
|
||||||
|
{
|
||||||
|
tracing::error!("coreml support not compiled in");
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#[cfg(not(target_os = "macos"))]
|
||||||
|
{
|
||||||
|
tracing::error!("CoreML is only available on macOS");
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
ExecutionProvider::CUDA => {
|
||||||
|
#[cfg(feature = "ort-cuda")]
|
||||||
|
{
|
||||||
|
Some(CUDAExecutionProvider::default().build())
|
||||||
|
}
|
||||||
|
#[cfg(not(feature = "ort-cuda"))]
|
||||||
|
{
|
||||||
|
tracing::error!("CUDA support not compiled in");
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
ExecutionProvider::TensorRT => {
|
||||||
|
#[cfg(feature = "ort-tensorrt")]
|
||||||
|
{
|
||||||
|
Some(TensorRTExecutionProvider::default().build())
|
||||||
|
}
|
||||||
|
#[cfg(not(feature = "ort-tensorrt"))]
|
||||||
|
{
|
||||||
|
tracing::error!("TensorRT support not compiled in");
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
ExecutionProvider::TVM => {
|
||||||
|
#[cfg(feature = "ort-tvm")]
|
||||||
|
{
|
||||||
|
Some(TVMExecutionProvider::default().build())
|
||||||
|
}
|
||||||
|
#[cfg(not(feature = "ort-tvm"))]
|
||||||
|
{
|
||||||
|
tracing::error!("TVM support not compiled in");
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
ExecutionProvider::OpenVINO => {
|
||||||
|
#[cfg(feature = "ort-openvino")]
|
||||||
|
{
|
||||||
|
Some(OpenVINOExecutionProvider::default().build())
|
||||||
|
}
|
||||||
|
#[cfg(not(feature = "ort-openvino"))]
|
||||||
|
{
|
||||||
|
tracing::error!("OpenVINO support not compiled in");
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
ExecutionProvider::DirectML => {
|
||||||
|
#[cfg(target_os = "windows")]
|
||||||
|
{
|
||||||
|
#[cfg(feature = "ort-directml")]
|
||||||
|
{
|
||||||
|
Some(DirectMLExecutionProvider::default().build())
|
||||||
|
}
|
||||||
|
#[cfg(not(feature = "ort-directml"))]
|
||||||
|
{
|
||||||
|
tracing::error!("DirectML support not compiled in");
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#[cfg(not(target_os = "windows"))]
|
||||||
|
{
|
||||||
|
tracing::error!("DirectML is only available on Windows");
|
||||||
|
None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
Reference in New Issue
Block a user