Files
face-detector/README.md
uttarayan21 33afbfc2b8
Some checks failed
build / checks-matrix (push) Successful in 19m25s
build / checks-build (push) Has been cancelled
build / codecov (push) Has been cancelled
docs / docs (push) Has been cancelled
feat: Added stuff
2025-08-18 11:31:03 +05:30

199 lines
6.4 KiB
Markdown

# Face Detection and Embedding
A high-performance Rust implementation for face detection and face embedding generation using neural networks.
## Overview
This project provides a complete face detection and recognition pipeline with the following capabilities:
- **Face Detection**: Detect faces in images using RetinaFace model
- **Face Embedding**: Generate face embeddings using FaceNet model
- **Multiple Backends**: Support for both MNN and ONNX runtime execution
- **Hardware Acceleration**: Metal, CoreML, and OpenCL support on compatible platforms
- **Modular Design**: Workspace architecture with reusable components
## Features
- 🔍 **Accurate Face Detection** - Uses RetinaFace model for robust face detection
- 🧠 **Face Embeddings** - Generate 512-dimensional face embeddings with FaceNet
-**High Performance** - Optimized with hardware acceleration (Metal, CoreML)
- 🔧 **Flexible Configuration** - Adjustable detection thresholds and NMS parameters
- 📦 **Modular Architecture** - Reusable components for image processing and bounding boxes
- 🖼️ **Visual Output** - Draw bounding boxes on detected faces
## Architecture
The project is organized as a Rust workspace with the following components:
- **`detector`** - Main face detection and embedding application
- **`bounding-box`** - Geometric operations and drawing utilities for bounding boxes
- **`ndarray-image`** - Conversion utilities between ndarray and image formats
- **`ndarray-resize`** - Fast image resizing operations on ndarray data
## Models
The project includes pre-trained neural network models:
- **RetinaFace** - Face detection model (`.mnn` and `.onnx` formats)
- **FaceNet** - Face embedding model (`.mnn` and `.onnx` formats)
## Usage
### Basic Face Detection
```bash
# Detect faces using MNN backend (default)
cargo run --release detect path/to/image.jpg
# Detect faces using ONNX Runtime backend
cargo run --release detect --executor onnx path/to/image.jpg
# Save output with bounding boxes drawn
cargo run --release detect --output detected.jpg path/to/image.jpg
# Adjust detection sensitivity
cargo run --release detect --threshold 0.9 --nms-threshold 0.4 path/to/image.jpg
```
### Backend Selection
The project supports two inference backends:
- **MNN Backend** (default): High-performance inference framework with Metal/CoreML support
- **ONNX Runtime Backend**: Cross-platform ML inference with broad hardware support
```bash
# Use MNN backend with Metal acceleration (macOS)
cargo run --release detect --executor mnn --forward-type metal path/to/image.jpg
# Use ONNX Runtime backend
cargo run --release detect --executor onnx path/to/image.jpg
```
### Command Line Options
```bash
# Face detection with custom parameters
cargo run --release detect [OPTIONS] <IMAGE>
Options:
-m, --model <MODEL> Custom model path
-M, --model-type <MODEL_TYPE> Model type [default: retina-face]
-o, --output <OUTPUT> Output image path
-e, --executor <EXECUTOR> Inference backend [mnn, onnx]
-f, --forward-type <FORWARD_TYPE> MNN execution backend [default: cpu]
-t, --threshold <THRESHOLD> Detection threshold [default: 0.8]
-n, --nms-threshold <NMS_THRESHOLD> NMS threshold [default: 0.3]
```
### Quick Start
```bash
# Build the project
cargo build --release
# Run face detection on sample image
just run
# or
cargo run --release detect ./1000066593.jpg
```
## Hardware Acceleration
### MNN Backend
The MNN backend supports various execution backends:
- **CPU** - Default, works on all platforms
- **Metal** - macOS GPU acceleration
- **CoreML** - macOS/iOS neural engine acceleration
- **OpenCL** - Cross-platform GPU acceleration
```bash
# Use Metal acceleration on macOS
cargo run --release detect --executor mnn --forward-type metal path/to/image.jpg
# Use CoreML on macOS/iOS
cargo run --release detect --executor mnn --forward-type coreml path/to/image.jpg
```
### ONNX Runtime Backend
The ONNX Runtime backend automatically selects the best available execution provider based on your system configuration.
## Development
### Prerequisites
- Rust 2024 edition
- MNN runtime (automatically linked)
- ONNX runtime (for ONNX backend)
### Building
```bash
# Standard build
cargo build
# Release build with optimizations
cargo build --release
# Run tests
cargo test
```
### Project Structure
```
├── src/
│ ├── facedet/ # Face detection modules
│ │ ├── mnn/ # MNN backend implementations
│ │ ├── ort/ # ONNX Runtime backend implementations
│ │ └── postprocess.rs # Shared postprocessing logic
│ ├── faceembed/ # Face embedding modules
│ │ ├── mnn/ # MNN backend implementations
│ │ └── ort/ # ONNX Runtime backend implementations
│ ├── cli.rs # Command line interface
│ └── main.rs # Application entry point
├── models/ # Neural network models (.mnn and .onnx)
├── bounding-box/ # Bounding box utilities
├── ndarray-image/ # Image conversion utilities
└── ndarray-resize/ # Image resizing utilities
```
### Backend Architecture
The codebase is organized to support multiple inference backends:
- **Common interfaces**: `FaceDetector` and `FaceEmbedder` traits provide unified APIs
- **Shared postprocessing**: Common logic for anchor generation, NMS, and coordinate decoding
- **Backend-specific implementations**: Separate modules for MNN and ONNX Runtime
- **Modular design**: Easy to add new backends by implementing the common traits
## License
MIT License
## Dependencies
Key dependencies include:
- **MNN** - High-performance neural network inference framework (MNN backend)
- **ONNX Runtime** - Cross-platform ML inference (ORT backend)
- **ndarray** - N-dimensional array processing
- **image** - Image processing and I/O
- **clap** - Command line argument parsing
- **bounding-box** - Geometric operations for face detection
- **error-stack** - Structured error handling
### Backend Status
-**MNN Backend**: Fully implemented with hardware acceleration support
- 🚧 **ONNX Runtime Backend**: Framework implemented, inference logic to be completed
*Note: The ORT backend currently provides the framework but requires completion of the inference implementation.*
---
*Built with Rust for maximum performance and safety in computer vision applications.*